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1. Introduction

In this Booklet we present Finite Element Methods (FEMs) for elliptic equa-
tions. We apply FEs with and without variational crimes to linear and non-
linear operators. We start with the linear case. So, let

A:U—=YV', A:Uy,— V, bijective, Uy CU, Vy CV Banach spaces(1.1)
We test with v, V v € V}, to determine the exact solution, ug,

up € Uy C U, a(ug,v) = < Aug,v >pixy
= < fio>yxpV veV, CV. (1.2)

In the crime free world this exact variational problem is replaced by the
discrete form. Determine the discrete or approximate solution, uf, s.t.

ub €Ul cUy cU :a(ul, o) = f(W") Y eVEcV, CcV;  (1.3)

here the Z/{;,,Z,l,f1 and V, V,?, represent functions and test functions, resp., sat-
isfying the appropriate boundary, continuity and smoothness conditions; the
index and exponent, , and *, indicate boundary conditions and finite dimen-
sional subspaces, resp. We call (1.3) a conforming FEM.

Non conforming FEMs or, more generally, FEs with variational crimes
violate the above variational approximate equation (1.3) in different ways:
Either the approximating subspaces U, V! violate the boundary conditions,
such that U ¢ Uy, V! ¢ Vi. Or they violate continuity or smoothness
conditions in the form U} ¢ U VE ¢ V, eg UM VE ¢ C(2) , hence
Up V¢ U =v = H' () for elliptic equations of second order. Or, the ex-
act scalar products or pairings, defining the projectors in the Petrov-Galerkin
methods, can be approximated or modified, e.g, by quadrature formulas and
related to collocation methods. Finally, the exact A may have to be replaced
by approximations Ay, e.g.. in difference methods. Hence instead of the above
(1.2) we have to modify a(-,-) into a”(-,-) and solve

ul e Ul : a(ul ") = R ") Vol e V] (1.4)

The goal in this Booklet is the proof of stability and convergence for
conforming and non conforming FEMs (, a special case of non conform-
ing Petrov-Galerkin methods,) with the different forms of variational crimes.
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We concentrate on FEs, but give a short presentation for spectral methods
as well. Quadrature approximations and collocation methods, specific varia-
tional crimes, are important for spectral methods.

We use throughout the Booklet the weak and strong formulation of the
problem. For discretizations they usually yield different approaches. But it
allows to study variational crimes in a natural way. At the same time it
allows to develop conditions for the FEs, which grant only slightly perturbed
discrete weak and strong formulations and discrete solutions.

Furthermore, as interesting, we obtain, under specific conditions, a class of
collocation methods on non degenerate subdivisions which is strongly related
to unusual ("super crime”) FEMs. To my knowledge, Doedel, [27, 28], is the
first to discuss these methods for a special case. Goldliicke has proved in his
Diplomarbeit (in preparation), with the tools of this Booklet, stability and
convergence for a very special case. The tools for the general case are available
in this Booklet, however will need a lot of additional ideas and work. This
class includes methods of high order applicable to general elliptic operators.
They are important for parameter-dependent problems, where turning points
and singularities have to be determined. With the techniques in [15, 16, 6, 7]
these results are extended to the case of bifurcation numerics in Chapter 8.

As in [15, 16] we introduce a new, relatively straight forward and simple
way to prove stability for a relatively general class of operator equations and
discretization methods: We combine compact perturbations of monotone op-
erators with approximation properties(error and inverse estimates). Recently,
we succeeded, [10], to prove stability and convergence for all these operators
for wavelets. This can again be applied to the bordered systems, required for
bifurcation numerics.

As a consequence of the above violations a direct comparison of a(-,-) on
U, x Vyand on U x VI is not possible. So, in contrast to [51], we have to
prove stability and estimate the consistency error and finally combine both
to get the desired convergence. In fact, we will have to interrelate stability
and consistency results on different levels to obtain the final results.

The Booklet is organized as follows: In Chapter 2 we start with a standard
presentation of the approximation theory for finite elements (FEs). A new
result seems to be existence of an ”anti-crime operator” E". It transforms an
uh with variational crimes to an E" u”, s.t. |[u® — E" uP|| g1 () — 0.

Chapter 3 starts with a simple example, essentially the Laplacian, moti-
vating the definition of general elliptic differential operators with their strong
and weak forms. Then for a Uy coercive a(-,-), hence a(u,u) > a||u|l;z2 with
a > 0, the weak solutions 42 in (1.3) converge to the solution ug in (1.2).

Chapter 4 starts presenting examples for finite element methods with
different types of variational crimes as mentioned above. We extend it to finite
elements and spectral methods for general elliptic operators. This allows to
develop general concepts for discretization, including variational crimes. Here
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we have to distinguish the variational consistency errors, familiar in the finite
element community and the classical consistency errors as introduced in other
general approaches, see below. These general approaches simplify the study of
nonlinear problems. It yields the standard result ” Consistency and Stability
implies Convergence”.

Chapter 5 presents generalized Strang Lemmas. It indicates for different
variational crimes the consistency terms which measure the influence of the
crime.

Chapter 6 presents the estimates for these consistency terms. They are
caused by violated boundary conditions, violated continuity, isoparametric
approximations, approximate projectors and operators as quadrature and,
finally, collocation. In addition, we show discrete coercivity for these cases, if
the original a(-,-) is Uy coercive. This allows the formulation of convergence
results for this case.

Chapter 7 deals with stability and convergence for conforming and non
conforming methods. We start with the result from the last Chapter: A U,
~coercive a(-,-), hence a monotone operator, induces a discrete UJ* coercive
a”(-,-), hence a stable discretization.. Then we proceed to compact perturba-
tions. Many different methods, e.g., FEM-, spectral- and difference methods,
see [16], satisfy the corresponding necessary stability and consistency condi-
tions. So one obtains convergence for all these methods.

Chapter 8 applies the earlier results to the case of bordered systems. They
have to be used for bifurcation numerics and can be interpreted as compact
perturbations of a slightly extended original operator. We show, that the
solutions of the numerical Liapunov-Schmidt equations converge to those of
the original Liapunov-Schmidt equations for the well known Jepson/Spence
conditions, see [40]. The convergence of the bifurcation scenarios is presented,
e.g.,in [9, 6, 15, 7.

The last Chapter 9 is devoted to the linearized Navier-Stokes operator. For
the not so interesting case of moderate viscosity, it is a compact perturbation
of the well studied Stokes operator. Otherwise, we refer to general stability
results. In both cases, the bordered systems are stable and thus bifurcation
numerics are safe.

For our approach to treat conforming and non conforming methods, we
use a mix of different concepts. It is strongly influenced by many earlier pa-
pers. Discrete convergence has been studied by Stummel, [58, 59, 60, 61],
Reinhardt [50] and Vainikko, [66], admissible discretization methods by Stet-
ter, [57], (inner and outer) admissible approximation schemes in Petryshyn
[43, 44, 45, 46] and nicely presented and extended in Zeidler [68].

Brezzi-Rappaz-Raviart have applied a similar version to finite dimensional
approximations of nonlinear problems, including limit and simple bifucation
points, however excluding many operator equations and nowadays impor-
tant discretization methods, [19, 20, 21]. Rappaz and Raugel studied spe-
cial cases of finite-dimensional approximation of bifurcation problems at a
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multiple eigenvalue, [47, 48], Raugel, [49], extended these results to symmet-
ric problems. Crouzeix and Rappaz gave a short survey book on numerical
approximation in bifurcation theory, [26], Calos and Rappaz presented nu-
merical approximation in nonlinear and bifurcation problems in [22]. Here,
in contrast to the earlier [19, 20, 21, 47, 48], two projectors for the analysis
of Petrov-Galerkin methods for nonlinear problems are introduced, but are
not employed for the bifurcation analysis. Furthermore, there is no reference
to other approaches as in Griewank and Reddien,[32, 35, 34, 36, 33] who
prove convergence for general bifurcation scenarios under the conditions of
[19, 20, 21] and Jepson/Spence, [40], who study bifurcation for perturbed op-
erators, not covering discretization methods. All the last papers, starting with
[19], do not allow to prove convergence for bifurcation of more complicated
problems as Navier-Stokes or porous media or nonstandard finite element or
spectral methods, see the discussion in [15, 16]. Approaches to treat these
more complicated cases use the concepts of consistent differentiability and
modified or bordered stability, see [8, 14,9, 1, 2, 3, 7, 6, 7].

Our presentation is fairly complete for elliptic operators of order 2. A gen-
eralization to elliptic operators of order 2m works well in Chapters 2- 5 and
it will work well in most of Chapter 7 again. However, the construction of the
anti crime operator in Chapter 2, and the consistency estimates in Chapter
6 are based on specific 2m = 2— techniques. So, only these parts would have
to be worked out for the general case of elliptic operators of order 2m.

Throughout the Booklet, all convergence results require a sufficiently
small discretization parameter, h.



2. Approximation Theory for Finite Elements

We indicate a discretization by FEs by a parameter h. In the following we
indicate the essential parameters influencing constants, C, e.g., C, , depends
upon h, u. Sometimes, we omit parameters to show the independence of con-
stants, in particular of the h or as a short notation sometimes. All the results
in this Chapter are strictly local. So it would be technically more involved,
however possible, to get these results for a strong local refinement of the sub-
division 7" of 2 and use the corresponding local h. This is a consequence
of only requiring non degenerate subdivisions. Even h — p—methods would
fit into our frame work. Then the local approximating spaces, here P, and
norms and estimates would have to be updated approximately. We give a
few results which are basic for the whole finite element approach. We assume
throughout the whole Booklet

2 C R" to be a bounded domain, with piecewise smooth boundary, (2.1)

hence (2 is open.

2.1 Basic Sobolev Space Results

Important tools for PDEs and approximation properties are the following
Theorems. Here (2.1) is sometimes modified.

Theorem 2.1.1. Extension operator, [68],p305-306, [18]: Let {2 C R"™ have
a Lipschitz boundary, let k € Ny and p € R with 1 < p < oo. Then there
exists a mapping E : W;(Q) — Wzﬂ“ (R™) and a constant, C, independent of
h, such that

Ev|o =v and ||EU||W;(Rn) < C”U”W}lc(n) Yv € W:(Q) (2.2)

This E can be constructed independent of k. Moreover, the function Eu is
C>® on Rh \ 0.

Theorem 2.1.2. Extension operator,[29], p 136: Let 2 C R" be a Che
domain, let k € N and let (2" be an open set with {2 C (2. Then there
exists a bounded linear extension Ep : Ch*(Q) — CP*(2'), with ¢ and
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D indicating trivial and nontrivial Dirichlet boundary conditions for £2'. So
there is a constant, C = C(k, 2, 2"), such that

EDvl_Q = v and ||EDU||Ck,a(QI) S C”U”ck,a(ﬁ) VU S Ck’a(ﬁ)7 (23)

where the || - ||cr.a (g denote the mazimum norm for C* functions with with
the corresponding bounds for the divided differences of the a-Hoelder contin-
uwous k — th derivatives.

Theorem 2.1.3. Trace Theorem: Let 2 C R™ have a Lipschitz boundary
and let p € R with 1 < p < co. Then there exists a constant, C, such that

ollzr o) < Cllollsids - lollyh ) Vo € Wp(9). (2.4)

For the following Bramble-Hilbert-Lemma we need the standard Sobolev
norms, semi norms and notations for partial derivatives and multi-indices

1/p 1/p

Wlwecay == | 3 ID%0B,0 |+ lwsea = [ 3 1D%0l1, 0,
la|<k la|=k
(2.5)
For w € W]*(f2) the standard derivatives and hence Taylor polynomials
Tjw(z) = . D*w(y)(z —y)*/a! are not defined. So we use the D*w €

|a|<m
L?(0), |a| < m directly and introduce the averaged Taylor polynomials Q™w
for w € W (£2):

Definition 2.1.4. Let 2 C R" or G C R" have finite diam G and B :=
B,(wo) with B C G be a ball such that for all z € G the closed convex hull of
{z} UB C G. Then G is called star-shaped w.r.t. B. Let

Pmax := Sup{p : G is star-shaped w.r.t. a ball B of radius p}, then (2.6)
v = diam G/pmax is called the chunkiness parameter of G.(2.7)

Now, let G' be star-shaped w.r.t. B and let ¢ be a cut-off function for B,
that is (i) supp ¢ = B and (i) [, #(x)dx = 1. We obtain the well defined
averaged Taylor polynomials, see [18],

QMw(x) := /BT;”w(:c)qb(y)dy with (2.8)
T w(z) = Z D%w(y)(z — y)*/al.
lal<m

Q™w is a polynomial of degree m — 1.

Obviously, triangles are always star-shaped. Mind that only D*u with |a| <
m are employed. A standard example for a cut-off function is
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#(z) = cexp (—(1 = (Jz — 20|/p)?) ") for z € B and ¢(z) = 0 outside B.

We only consider star-shaped G (or T € T", see below) with bounded chunk-
iness parameter, vy, see ( 2.7).

Theorem 2.1.5. Bramble-Hilbert Lemma: Let G with diam G = d be
star-shaped w.r.t. B of radius p s.t. p > (1/2)pmax, G have the chunki-
ness parameter v, and Q™w be the averaged Taylor polynomial. Then for
all we WG),L=0,1,...,m, 1 < p < oo, there exist constants Cr,n,
s.1.

lw — Q™ wlwe(cy < Crmnpd™ Hwlwm(a) or
lw = Q" wllwe@) < Cm,n,'ydm_e|w|w;n(c)

An important tool to prove the invertibility of an operator A or stability of
its discrete counterpart, A", is the so called inf —sup condition. Although
the following (2.9) would allow u € U,v € V without boundary conditions,
the (2.10) ff. require boundary conditions. Hence we formulate the following
Theorem for Uy, Vy, where the index, 3, e.g., Up indicates the boundary con-
ditions. Nevertheless, the norms are indexed by the original Banach spaces
without boundary conditions, e.g., ||u||u.

Theorem 2.1.6. Brezzi-Babuska condition: Let Uy, Vs, be Banach spaces,
A € L(Up,V}), the set of continuous linear operators, and a(-,-) : Uy XV = R
the associated continuous bilinear form, be related by

for fized uwely : < Au,v >yxy,=a(u,v) Yv € V. (2.9)

Then the three statements (2.10), (2.11) and (2.12) are equivalent.

At e LWV, Up) eists, (2.10)
3 €€ >0st sup |a(u,v)|/||v]ly > €llully Yu € Up and
0A£VEVS
sup |a(u,v)|/llull > €lvlly Vv €V, (2.11)
0AuEU
3 €>0st sup |a(u,v)|/||vlly > €l|lullu Yu € Up and
0AvVEV)
VoveV, 3u€ely:alu,v) #0. (2.12)

Ife e in (2.11), (2.12) are chosen as the exact inf-sup— values, then each of
the conditions (2.10), (2.11), (2.12) implies ||A™||ys —y, = 1/e = 1/€.

For applications to discrete operators and/or bilinear forms, the above
€, > 0in (2.11), (2.12) have to be independent of h.

Theorem 2.1.7. Brezzi-Babuska condition: Let U, V]! be finite dimensional
Banach spaces, A" € LU, V"), and a*(-,-) : U} x V]I — R the associated
continuous bilinear form, defined
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for fived u" € U by < APl vt >y ph = a(uh, o) Vol € VP.(2.13)

Then the three statements (2.14), (2.15) and (2.16) are equivalent. It is im-
portant that for stability arguments the following constants C, €, €' are valid
only for sufficiently small h < hg, ho > 0 and have to be independent of h.

AN e LV UM) and C  eist, sEINAM e <C, - (214)

3 ¢ >0st sup a0/ > ellutly Yu' € U] and

0#£vh eVh
sup [a” (u", )|/ llu"ll > €'ll"(5 Vot €V, (2.15)
0F£uh Ul
3 e>0st  sup |a"(@oM)|/o"% > €|lut} Yu € U] and
0#£vheVh
Vool e VI 3wl eul : at(uh,0h) #0. (2.16)

We do not give a proof, but it is straight-forward to show that (2.15) or (2.16)
are necessary for (2.14): If a 0 # w" € R(A")* exists, choose 0 # v L wh.
Then a”(w",v") = 0 contradicting (2.15) (2.16).

With a subdivision 7" as introduced in Definition 2.2.1, we often have to
modify the norms in (2.5), as

1/q

a1 = e oy = | S ZHD%HTHL(T7 . @1
TeTh |a|<k

with the usual 1 < g < o0,

[|u”(|5 . () = ess sup{|D*u"(z)| :Vz € TVYT € Th}
and corresponding bilinear forms and semi-norms

1/q

|uh|€v;(ﬂ): Z Z ||Da“h|T||3;q(T7 i (2.18)

TETH |a|=k

Remark 2.1.8. 1.) To formulate the corresponding condition for the discrete
problem, we want to indicate the discrete bilinear forms. In (2.9), based on
correct boundary conditions in Uy, Vy, the a(-,-) : Uy x V, — R had been
introduced. In the cases we consider here, these a(-,-) are always realized by
integrals over (2. Similarly as the norms in (2.18) we will have to introduce

a(,) U x VS R, a(ul ol = Z / alr(u|r, v"|7)dp,(2.19)
rer T

and corresponding a"(-,-) : Ul x VI — R, obtained, e.g., by approximating
these [. by quadrature formulas. We will elaborate this term in (2.19) in



2.2 Subdivisions and Finite Elements 11

Chapter 4.

2.) We want to point out, that the above inf — sup — conditions for A, a(-,-)
do not imply the corresponding inf —sup — conditions for A", a"(-,-). The
a"(-,-) has to satisfy these equations uniformly w.r.t. h with corresponding
" >e>0eh>€ >0.

2.2 Subdivisions and Finite Elements

The following introduction into the approximation theoretic properties of
Finite Element Methods (FEMs) is strongly influenced by the classical [24]
and by [38, 17, 18]. We need several Definitions for subdivisions and finite
elements:

Definition 2.2.1. Appropriate subdivision: A set T" = {Ty,...,Tu} of
open subsets T; C 2 C R™ is called an appropriate subdivision for (2 if

() Z=0UTs
(ii) eachT € T" has at least n+1 and at mostm > n + 1
“vertices”, e.g. triangles and quadrangles
with straight or curved edges;
(4i3) T; N Tj is either empty or has one vertex or a common edge(2_2())
on an, in general, (n —1)-dimensional surface spanned by
Jjoint vertices of T; and T;, see Figure 2.1;
(iv) If the T; are rectangles, the admissibility condition (i) can
be relazed as follows: T;NT; may be one half
of the larger edge of the larger T, see Figure2.13 below.

Fig. 2.1. Appropriate triangulation for {2 with curved boundary

We use the term triangulation instead of subdivision, whenever we require
that the T € T" are triangles, tetrahedrons or n-dimensional simplices. For
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n = 2 these triangles or rectangles and parallelograms or even more general
quadrangles are possible. To simplify the computations we assume each of
the T € T" to be affinely (or isoparametrically, see Chapter 2.7), mapped
onto the same reference domain, K. We start with strictly locally defined
finite elements and introduce, see [24].

Definition 2.2.2. We assume

(i) the element or reference domain K C R™ to be an open domain with
piecewise smooth boundary,

(#) the space of shape functions P to be a finite-dimensional space of func-
tions on K and

(iii) the span of nodal variables N' = span{Ny, Na,..., Ny} to be a basis 1 for
P,

necessarily of the same dimension d = dim P = dim P'. Then (K,P,N)

is called a finite element. There are many possible combinations of P,N. If

P = span{¢1, ¢2,...,¢q} is a basis for P dual to N, hence N;(¢;) = dij,

then ¢1,...,¢q is called the nodal basis for P.

It is implicitly assumed that the nodal variables, IV;, lie in the dual space
of some larger function space, e.g., a Sobolev space, U. The nodal variables
N; usually denote evaluation of functions or derivatives in given interior and
boundary points of K, see the Examples below. A set of nodal variables, N,
is called unisolvent for P, if

VB, eR 3 ¢€P:Ni(¢p) =8, i=1,...,d.

Then, necessarily dimP = dim N = d, and N is unisolvent for P if and
only if ¢ € P,N;(¢) = 0,i = 1,...,d implies ¢ = 0. Figure 2.9 shows a non
unisolvent FE.

For a given u € U, a nodal basis of shape functions P = span{¢1,..., P4}
and a unisolvent N = span{Ny, Na, ..., Ny}, a (local) interpolation operator
is uniquely defined, on a space of functions, i/ : K — R, as

d
Ik :=1:U— P, Tu:=Y_ Ni(u)pi,Ni(u) = N(Tu),i = 1,...,d. (2.21)

i=1

We use the standard notation of the Dirac delta function §(P;) and 6(P;) € N
if Ni(u) = u(P;) = §(F;)u.
! a basis of linearly independent elements; this concept will be slightly extended

below to linearly dependent nodal variables, where N, related to N, satisfies
dim N < dim N = dim P.
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2.3 Triangular and Rectangular Polynomial Finite
Elements

As most important examples, we start with triangles and quadrangles for
n = 2 and their generalizations to n > 2. To avoid difficulties near the
boundary, we start with

a polyhedral domain {2, for n = 2 called polygon. (2.22)

The case of curved boundaries for 2 is treated below by interpolation or
isoparametric finite elements, see Section 2.7.

We choose the reference domain K in Definition 2.2.2 as a unit rectangular
n— triangle or a unit n— cube, hence diam K = 1. We give some examples
of FE-triples (K,P,N). The most important choice for P is, with «; € R,

Pzprnn, = {UI E Oéiﬂfi = (.Z'l,...,ib'n) (S Rn},'Pm = 'P?n
il <m (2.23)

i = (i1, yin) 20, |i| = i1+ +in, 28 = (T1,...,Tn)" =z -+ -ain.

Sometimes, we allow even P C PZ. We have with P,, = P2 in (2.23)the
following dimensions.

dim P, = (m + 1)(m + 2)/2, hence dim Py, P, P2, =1,3,6. (2.24)

A convenient criterion to check the unisolvence property for n—triangles

Zq V4

Z4
z1 22 Z1 26 22
Fig. 2.2. P;: Linear Lagrange Fig. 2.3. P: Quadratic La-
FEs grange FEs

is the following observation, see [18]. Let a non degenerate hyper plane L be
defined as

L:={zeR":L(z) = Z a;z' — B =0} witha; € R,Z |ai| > 0.(2.25)

jil=1
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210 215
<13
28
<10
&
&6

Z1 29 Z4 Z1 zZ3 25
Fig. 2.4. Ps3: Cubic Lagrange Fig. 2.5. P4: Quartic Lagrange
FEs FEs

21 22 21 <6 22
Fig. 2.7. P4: Quartic Hermite
Fig. 2.6. P3: Cubic Hermite FEs FEs

Proposition 2.3.1. Let a polynomial P € P vanish on L. Then there ex-
ists a Q € PI_, such that P(x) = L(z)Q(z).

The edges L € {Ly,La,...,Lp41} of the triangle K allow, in combination
with Proposition 2.3.1, a factorization of P € P}.. This allows easy proofs
for unisolvence, see [18].

Now, we list some combinations of two dimensional triangles K with P,
and appropriate A, unisolvent for P,, and show that in the following Figures
2.2- 2.8, 2.10 -2.12. We have included a mon unisolvent combination for Ps
in Figure 2.9. The different cases are indicated by points z; in K or on the
boundary of K according to
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z; is marked by e if N;(¢) = ¢(2;) for ¢ € P, N; € N, and by
@ if Ni(¢) = ¢(2;) and N/ (¢) = grad ¢(z;) for
¢ € P, N;, N} e N.

In some cases, e.g. for the Argyris element, see Figure (2.17), only normal
derivatives are prescribed. If only function values, e, are required, we have a
Langrange finite element, if function values and first (®) or, even additionally,
second derivatives, see below, are required we have Hermite finite elements.
For unisolvence we need the same number of values of the function (and/or
its derivative) as dim P, = (m + 1)(m + 2)/2. All Figures show conforming
elements except the non conforming elements in Figure 2.8,2.9. 2.9 si even a
non unisolvent element.

The case P; for the linear conforming and non conforming Lagrange elements
shows that the N is certainly not uniquely determined by P.

Remark 2.3.2. Although it is not explicitely required, all the figures show a
high symmetry w.r.t. the boundary (and interior) points. In fact, if we want to
allow general nondegenerate subdivisions, see Definition 2.4.5 below, we have
to impose symmetric boundary points of the same kind on all edges. This
guarantees that the boundary points in neighboring subtriangles coincide.
If we discuss highly symmetric subdivisions, e.g., rectangular triangles in a
rectangle, we can relax this symmetry of the boundary points.

Klaus Klaus Bleibt das??There are more possible choices of N for P,,.
Obviously, the P,, Lagrange triangles will do. For P3 we might choose the
midpoint and each vertex of the triangle and two symmetric points on the
edges in distance 1/2 # a # 0 from each vertex to yield a unisolvent com-
bination. Or we might drop certain monomial terms in Ps, e.g., z?y, and
choose two symmetric points on the edges in distance 1/2 # a # 0 from the
vertices of each edge and one point on the line from a vertex to the opposite
midpoint of an edge, unequal the midpoint of the triangle. Some of these
choices impose variational crimes, which have to be paid by the consitency
errors below.

For rectangular K we often use instead of P,, the tensor products of
bilinear, biquadratic,.. polynomials, see Figures 2.10-2.13 and [52, 18]

0<j<m

dim Q,, = (dimPL)?* = (m + 1),
Whenever the knots are chosen in a triangle K on m + 1 parallel lines

with altogether s =1+2+---(m + 1) points z1, 22, .. ., 25, there is a simple
inductive computation, see [17], to determine the interpolating

¢ EPp st. d(z:)=fi,i=1,...,s =(m+1)(m+2)/2 = dim Pp(2.27)
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¢33 22
* 21 22

1 Fig. 2.9. Py: Non conforming
Fig. 2.8. Pi: Non conforming non unisolevnt quadratic La-
linear Lagrange FEs (Crouzeix- grange FEs
Raviart)
V4 Z4 z7 29

® ([ ] q 26

21 z2 21 z2 Z3
Fig. 2.10. Q;: Bilinear Lagrange Fig. 2.11. Q»: Bi quadratic La-
FEs grange FEs

Using the affine equivalence, see Definition 2.4.1, we can choose the parallel
lines as y = constant . The ¢ for m = 1 line is obvious. So assume we can solve
(2.27) for m lines. Let the last line, with the first m + 1 knots, 21, ..., Zm+1
be located at y = 0.

Determine pg € P, : po(2;) = fi, i=1,...,m+ 1, and, by induction,

determine the unique q € P2, : q(z;) = —(fi —po(2:)), i =m +2,..,s.

1
Yi
Then p € P, = P, p(2,y) := po(2) +y q(x,y) solves (2.27) .

A similar approach is possible for some rectangular elements.
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AV4
/\ .
quadratic
X X X interpolation
%13 216
‘ N
<
° ° ¢ <12
[ ] ([ ] [ ]
® (] ® 28
. 8-
1 %2 3 4 Fig. 2.13. Quadratic subdivision
Fig. 2.12. Q3: Bi cubic Lagrange (mesh-refinement), violating Def-
FEs inition 2.2.1(iii), see (iv).

2.4 Finite Element Spaces

Now, we want to handle the general situation. To compute interpolating FEs
¢ € P we introduce an equivalence.

Definition 2.4.1. Let (K,P,N) and (K,P,N) be two finite elements, let
F:K— K,F(x) = Az + b, A € R"*" nonsingular, b € R, be an affine (or
isoparametric) map such that, see Figure 2.1}

(i) F(K) =K,
(ii)) F*P:=PoF =P and X R
(i1i)) N(f)=N(f)=N(foF) for f=foF or N =FN.
Then (K, P, N) is called affine equivalent to (K, P, N') and we write (K, P,N)%
((K,P,N)).
Here, we have used the following notation.

Remark 2.4.2. Let f 'K — R be given. Then the pull-back of F' : K — K
is defined by F*f := F*(f) := f o F, the push-forward F, as (F.N)(f) :=

N(F*f) = N(foF). We find for f := foF that f = foF !and f=foF

implies N(f o F) = N(f) = N(§).

Obviously affine equivalence is an equivalence relation. If P = span{¢1, @2, ..., ¢4}
is a dual basis for N with N;(¢;) = d;;, then P = span{¢; = ¢, o
F=1 ... ¢qa = ¢q0 F~'} is a dual basis for N and N;o = N;(9 o F).

The elements in the Figures 2.15 and 2.16 are inequivalent. Figure 2.17 shows
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Fig. 2.14. Affine transformation

Fig. 2.15. Inequivalent quadratic Lagrange FEs: Affine mappings
are not possible

Fig. 2.16. Inequivalent cubic Hermite elements: Incompatible nor-
mal derivatives

furthermore, that FEs with prescribed normal derivatives, as e.g. the Argyris
elements are not affine equivalent, but only nearly affine equivalent, [24, 17].

Now we can handle the local interpolation in (K,P,N) and its affine
equivalent elements, e.g. the (T, Pr,N7). If (2.22) is satisfied, we can as-
sume in all practical examples the same (K,P,N), appropriate Fr and
Pr o Fp = P. If different reference domains K have to be used, we need ad-
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23

Z1 22
Fig. 2.17. Quintic Argyris FEs

ditional technical tools, e.g., combining triangular and rectangular elements.
We introduce the space of Finite Elements. We need P, N, the subdivision
T" and the affine (or isoparametric) mappings

F=Fr:K—>T, Ft = Az +b, A= Ay € R™",
b=breR*"VYTeTh (2.28)

For simplicity we again assume that we have an affine (or isoparametric) map
from each T € T" to the same reference element (K, P, N). A generalization
to different K is straight forward.

Definition 2.4.3. Let T" be a subdivision for 2 and let Fr : K — T be
chosen as in (2.28). Then

U .= {uh € L*(02) : u"|7 € Pr =P o (Fr)™'} (2.29)

is denoted as (approximating) space of Finite Elements by 7" and P, u" as
Finite Elements, for short, FFEs.

Since the T € T" are open, (2.29) does not imply transition properties for
u?|r and ut|r, if TNTy # 0. For non conforming FEs, u* € U" and an
edge e C TNTy usually uh|T|e # uh|ﬁ|e. Therefore, in many cases additional
properties are imposed such as

Uuh N L2(N), u" nC%2), U nHY(N).

For interpolation and approximation properties of finite elements the follow-
ing

local interpolation operator is important. It is essentially defined by P and V.
Let in P = {¢1, ..., ¢a} the ¢; represent a nodal basis for N' = {Ny,..., Ny}.
Using the bijection Fr, the local interpolation on K, see (2.21)

1
Igv = Iv ::ZNi(”)¢i forv:K - R (2.30)

i=1



20 2. Approximation Theory for Finite Elements

is combined with Definition 2.4.1. This yields a global interpolation operator
in the following four steps.

Definition 2.4.4. For the FE space U" : 2 — R with the underlying subdi-
vision T", see Definitions 2.2.1 ff, and (K,P,N):

(i) Let (T,Pr,N1) and the fived (K,P,N) be affine equivalent YT € T"
and Frx = Arz + by satisfy Fr(K) =T.

(i) Define the interpolation operator I" = I;lh :U — UM with NT (v)
:= N;(vo Fr)(= NI (I"v o Fr)) and ¢T = ¢; 0 F', as, see (2.30),

d d
"y =Y Niwo Fr)-(¢io Fp') =Y NI()¢T ¥V T e Th2.31)

i=1 i=1

(iii) Assume P € T N'T, to be a vertex or a point on an edge e of T with
5(P) € Nr. Then ¥ T; € T with P € T; the identical values of the
function or derivative of v in this point P have to be used ¥V T; > P to
define, e.g., an N(vo Fr;) = §(P)v. This implies continuity of, e.g., the
function at P from T to T}, but not on e and in (2.

(v) Let 1 be the highest derivative required in N'. A reference element
(K,P,N),K C 12 is said to be a C" element if r is the largest non-
negative integer for which

Vh = ThCH () C CT(2) nWIH(0).

We do not intend to formulate the sharpest results under the weakest possi-
ble conditions for the different cases below. Rather we formulate conditions,
see (2.34) below, which allow the following implications: The interpolation
operator I" is a bounded operator, a good approximation and the FEs al-
low inverse estimates. Finally, a convergent anti-crime operator E" exists,
see Section 2.6. This is necessary for the nonconforming finite elements. E.g.,
discontinuous u* € U" are not in U or u* violate the boundary conditions.
We introduce

Definition 2.4.5. Let {T"},0 < h < 1, be a family of subdivisions of (2
such that
max{ diam T:T € T"} <h diam £,

then h is denoted as maximal step size . The family is said to be quasi-uniform
if there exists x > 0 such that

min{ diamBT:BTCTETh}th

for all h € (0,1]; here Br is the largest ball such that T is star-shaped with
respect to By. The family is said to be nondegenerate if there exists x > 0
such that

diam By >x diam TV T € 7" h € (0,1]. (2.32)
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Remark 2.4.6. 1)The sequence of {T"} is non degenerate if and only if the
chunkiness parameter is uniformly bounded for all T € 7" and for all h €
(0,1]. Let all T € T" be triangles. Then 7" is non degenerate if and only if
for every T € T" the interior angles o > ag > 0. This is used as definition for
quasi-uniform 7" e.g., in [38, ?]. A quasi-uniform family is non degenerate,
but not conversely.

2) If we start with an arbitrary subdivision in two dimensions and repeatedly
subdivide by connecting edge midpoints, we obtain a non degenerate family
of subdivisions. For a well defined alternative, see [4].

3) For quasi-uniform 7" each T is uniformly star-shaped.

2.5 Interpolation errors and inverse estimates

Since the 4 € " might not be continuous across common edges e C TNT},
and hence u" ¢ H'(12), [24], the usual Sobolev-norms || - llwm () might not

be defined. However, for all practically important cases the ||uh|T||W;n(T)

and ||ulz||om (7, and hence [[u||}y.. o) exist. Correspondingly we have in-
P

troduced norms and semi norms, ||uh||’§V;(Q) and |uh|{}‘,§(m in (2.17) and

(2.18), resp. They coincide with the original norm [[u"|lwr(q) in W;"(12).

Analogous definitions and equalities may have to be used for scalar products

and bilinear forms as well. The decision which of the following choices of m, p
in the spaces

U{}V;l(m = {u" eUh: ||uh||{5v;1(m < oo} for h =0 (2.33)

is appropriate, depends upon the interplay of ansatz- and test-functions. They
are related by the corresponding bilinear forms. Certainly, for each fixed h
we want the [|u”||},.. ) < co. We assume throughout

p
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Let the reference FE (K,P,N) and the subdivision T" satisfy

(2) K is star-shaped w.r.t. some ball,

) choose the smallest 7 > —1 s.t. Pry_1 € P C Prars
P CWR(K), mostly 7= —1, P & Ppyr for 7> 0, ( hence,
there exist v € P s.t. [[vllym+r-1x) < Iollwm+r(x)),

(iii) N C (CY(K))', hence the elements of N’ are
evaluations of u and derivatives of u up to the order </ in
(different) points P for P € K and additionally

let 1 <p<oo and m—1—-n/p>0 for p>1or

m—1l—-n>0 for p=1, (2.34)
(1v) alternatively to (iii) we assume N C (W;*(K))',
(v) {T"},0 < h <1 is a nondegenerate family of appropriate

subdivisions of a bounded polyhedral domain
2 C R"with the parameter x, see (2.32),

(vi) forall TeT" 0<h<1, the (T,Pr,Nr) is affine
equivalent to (K, P,N),

(vid) the combination of (i) and (v) shows that T is uniformly
star-shaped VT € 7" and that the chunkiness
parameter v of all T € T" is bounded.

Then the following results are proved in [18], compare [17, 38] as well. Mind
that the conditions, relating m,l,n,p in [17, 38], (4.4.4) and (4.4.20) The-
orems, are only imposed for (2.34) (iii) to allow the Sobolev embedding
Lemma, but not in (iv).

Theorem 2.5.1. Let the {T"},0 < h < 1, and the reference element,
(K,P,N), satisfy (2.34) for some l,m,p. Let I" be the (local) interpolation
operator in (2.81) defined by (K, P,N). Then there ezists a positive constant
C, such that for all 0 < s < m, the following local and global convergence-
and boundedness-results are correct for allv € W({2) :

o = I"0llws(ry < C ( diam T)™°|v|wm (1),
1" [lwsry < ollwgery + C( diam T)™ *|olwm(zy.  (2.35)
[l — "I} s(2) < C W™ lolwm (o), (2.36)
||Ihv||’13v;(n) < |llws(e) + C B *lolwm (o)

This C' depends on the reference element, and on n,m,p and the number in
x in ( 2.82). For 0 < s <l <m, see (iii) in (2.84), we have

llo = I"0|fys (@) < C W™ Plolwmiy Vo€ WP(Q). (2.37)

Inverse estimates relate various norms for s > m, here for finite element
spaces. They are necessary to handle variational crimes. We again present
local and global estimates. Note that for the next two results, see [18], we
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need 7" and the affine (isoparametric) maps Fr : K — T. However, no
reference to N, N7 nor the unisolvence is made.

For the following discussions we often need scaling of T into 7' and of the
corresponding Sobolev norms. Let T" be a bounded domain in R and v be a
function defined on T'. Then 7' and © are defined as

T ={(1/ diam T)z:z € T} with diam 7 =1 and
8(2) =v(( diamT)&)V 2 eT. (2.38)

If P = Pr is a vector space of functions defined on T, then P = ’ﬁT =
{6 : v € P} is defined on T'. Often, we have to relate the ||uh|T||W;n(T) and
|uo FT|T||W;L (7 or we may choose a general K instead of T'. This scaling of
Sobolev norms satisfies

Proposition 2.5.2. Let f € W*(T),1 <p < 00,j := |a| <m, and T,T C

R™ be related, see ( 2.88), as T = Fr(T). with Frx := Fz := hx + b. Then,
we obtain 2

18% fll,(ry = WP~ 1*10%(f © Fr)lly, 4y, with h = diam T, hef2e39)
|f|Wg(T) = hn/p_j|f OFT|W1§(T)a ||f||W;n(T) < Chn/p_m”f o FT“WPW(T)'
Proof For Fz := Frz = hz +b we find with F' = hI, I the identity matrix,

that
DY) (f o F)(2) = W (DY) f) o F(2)

hence

0%(f o F)(2) = h¥(0°f) o F(2).
This yields

S |0°(f o F)(2)|Pdz = [y |h*}(8*f) o F(2)|Pdz (2.40)
= hrlel [ 1(0%f) o F(z)|P det(F')|dz / |det(F)| (2.41)
= pplel=n [ (9 f)|Pdz. (2.42)

This shows the equalities in (2.39), summation yields the last inequality. B

Note that the condition yh < diamT < h see (2.34) (v), in the following
Proposition 2.5.3 is strictly local, referring only to 7', and thus is satisfied for
nondegenerate subdivisions.

2 the general case of the form F : T — T,Fx := Frz = Az + b =: hA%Zz + b
can be treated along the lines in [18] essentially using the formula (4.4.23) there.

this yields for T € 7" with non degenerate 7" again wmry < Ch™P~™||fo
y ™(T)

F”W;"(’f")



24 2. Approximation Theory for Finite Elements

Proposition 2.5.3. Let xh < diamT < h, where 0 < h < 1 is any positive
number (not necessarily the h in T") and P be a finite- dimensional subspace
of WI(T) N WHT), where 1 <p < 00,1 < q <00 and0<1<j. Then there
erists C = C’(ﬁ,f’,j,p,q,x) such that for all v € P, we have

lollys ) < C B8P~/ . (2.43)

The following theorem is a global version of the last result.

Theorem 2.5.4. Let {T"},0 < h < 1, and (K,P,N),Pr = P satisfy
(2.34), P CWH(T)NWT) where 1 < ¢ <p<o00,0<1<j<m+r. For
TeT" let Vi ={vh: 2 e Rv" is measurable and v"|r € Pr ¥V T € T"}.
Then there exists C = C(4,p,q,x) such that

10" g < C BP0/ o (244)
for all v® € V!. Mind that (2.44) only makes sense for j < m + 7, for T

see (2.34), since otherwise ||vh||';w-(m = ||Uh||"jvm+f(m. For p < q the (2.44)
P p

remains correct for a quasi-uniform family T" if the term (n/q—mn/p) in the
exponent is deleted

Remark 2.5.5. This last Theorem is a slight modification of [18]. Here we only
require a non-degenerate {7"} however for ¢ < p instead of 1 < p,q < oo
for a quasi-uniform {7"} there. A careful control of the [18] proof shows
that only for p < q the quasi-uniform {7"} is needed. Furthermore, for the
study of the C(P, T, 4,p,q,X), see (4.5.14) in [18], only norms for the Ay in
Frx = Arxz + br and its inverse A}l for each single element are needed.
There is no reference to (2.34) (i)-(iii).

2.6 Anti-Crime Transformation from U" to U

To simplify the technicalities, we restrict the discussion to two variate FEs
in this and the next Section. The extension to three variate FEs is partially
straight forward. For the next Section it is presented in Lenoir, [41]. For the
study of variational crimes we require an operator, E”, which eliminates the
variational crimes in the sense that

EM:uh U for UM ¢ U, yields E"u" e U (2.45)

This E" is realized via a local interpolation operator I see (2.68). It is
defined on an

extended F.E. (K,P*,N°) with P C P°, N C N°®
and a corresponding extended subspace L{f. (2.46)
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It is not possible to straight forwardly generalize the convergence results with
the techniques used for Theorem 2.6.3.

To define E*, the I is applied, not to the original u”*, but to an averaged
and additionally interpolated u”, indicated as u? € U" # U". However, I"
can be applied to the original u” as well. So, we require that

IM Ul — Ul with I*|,n = idyn, hence I"u" = u" € U™ and
Ehuh s uh cu, EM = Thul £ 1M with ot e Ul £ UP, (2.47)

see Algorithm 2.2. As indicated above, we present the following construction
for the case of two variables,

n=2andfor U =W,(2), 1<p< . (2.48)

The above E" in (2.45) enforces exact boundary conditions, see end of this
Section, and deletes, e.g., the discontinuities of an u* € U" along the edges. In
fact, for discontinuities A/ along an edge e C TNT;, T # T}, usually too few
interpolation or continuous transition points P; € e are required to enforce
® ulp, = ul|r,),. We assume for the two vertices of one, and, see (2.49),
(2.50), of all edges e : Vertices Q1,Q2 € e, missing in N, are simultaneously
missing for all edges. This excludes some exotic FEs, e.g. subdivisions as in
Figure 2.13, or affine equivalent to a hexagon with prescribed function values
in every second vertex. However, it is automatically satisfied for subdivisions,
affine equivalent to triangles or squares. It implies in general different values
in the vertices Q; € e, hence u"|r(Q:) # u"|r,(Qi),i = 1,2. This yields
discontinuity and only u‘hT, but not u”, is defined in Q; and Q». Altogether
these discontinuities of u” along e imply u® ¢ U, see [24], p 207-208. We
study the following most important cases of non conforming elements for
U™ ¢ Wy (12). We construct the operator E* in (2.68) and study its properties
in Theorem 2.6.3.

The basic idea is simple: Instead of (K,P,Nr) with 4, say P|. = P} we
introduce additional points in € C K. Then we extend P, N to P¢,N°¢ s.t.
(K, P¢,N¢) is unisolvent, P C P¢ and it defines a conforming finite element
space. To achieve that we might have to delete or add some interior points
in T. So we assume®

3 we use here and below the slightly incorrect notation P|T|€ for ’P|T|e or u|7(Q)

for u"|+(Q) with Q € T.
since k might be different for different edges e, we choose the largest value of k
for all edges e € T

5 again excluding only exotic cases or choosing some additional conditions in N
The following derivations (u")¥)(P;) might indicate either all partials of the
order j or, as in the case of Argyris FE, only one directional (normal) derivative
in P;.
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For T,T, € T"with an edge e CTNT; let Pz, Pl € Py

Let the N, N7, require the same evaluation of functions and partial
derivatives (u")9)(P;),5 =0,1,---,u(P;) — 1,in the same points  (2.49)
P, ee,i=1,...,i(e). For the following construction one sometimes only
counts the derivatives(u”)) (P;),0 < j < p; < p(P;), in the direction of e.

As indicated and to simplify the technicalities, we exclude some exotic cases,
e.g., subdivisions with regular triangles or rectangles and different numbers of
conditions on different edges (this is indeed possible and admitted in (2.49)!),

we assume the same conditions (2.49) for every edge e C T,T € T",

for short e € T". Vertices Q € e are simultaneously missing. (2.50)

If for all u" € UM the two polynomials u"|7), = u”|r,|, for one, and by (2.49)
- (2.50), for all edges e € T", then we obtain u® € C(£2) N H'(2), hence
conformity. We need the above condition P C Ppe, N C N™, see (2.46),
to guarantee I"uf = u" V u" € U", see (2.31). To simplify the presentation
we assume, see (2.34) with minimal 7,

Pm—1 C€P CPpyr CP¢ now choose the minimal
k>m+71 st u|r, € P Vu'euh,
with Py =P, k=m —1 for r = —1. (2.51)

Sometimes this k is overestimated in the sense that u”|r/, has a degree < k.
Since we only need E" for theoretical purposes these overestimates in (2.51)
do not cost anything and make our proofs easier. For the & in (2.51) the FEs
defined by (K, P¢,N¢) and satisfying (2.49)- (2.51) have the property ©

... k+1—wv(e) =0 yields conforming u"

v(e) 1=t + - fhe) With k+1-— Vgeg > 0 yields non conforming 1&2152)
The case k + 1 — v(e) < 0 would contradict the aimed unisolvability of
(K,P¢,N¢). Since we consider the non conforming case here, we will de-
fine k+1—wv(e) or k+ 2 —v(e) additional points ); on e and their function
values, see Algorithm 2.1. The two vertices of € are or have to be included
anyway. Thus, we finally have k+1 or k+2 data on €. We define the extended
degree m® for polynomials on e and use, a possibly updated, m¢ on K :

Algorithm 2.1 Definition of an appropriate polynomial degree, m¢, for the
extended conforming FEs. This m® > m + 7 in (2.34), (2.51) depends upon
the transition properties along the edge under the conditions (2.48)- (2.52).
We introduce additional points (); on one edge e and the corresponding new
6

mind that every additional directional derivative along e increases k in (2.51) by
1.
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values for ul(Q;). According to (2.50), we choose the same points on every
edge e of T":
input K, N, P,Q;
for the non conforming case, k+1 —v(e) > 0, we choose the missing
points Q;and define u"(Q;) according to (2.55), (2.58).

if  the vertices Q1,Q2 € € are missing ( simultaneously!), (2.53)
include both Q1,Q2: for Q; =T1 N+ NThp,, (2.54)
a common vertex of m; squares or triangles, let
1
ue(Qy) = E(uﬂﬂ (@) + -+ 4"z, (@), (2.55)
j

if 0>k+1—v(e)—2( >-1by(2.52))
define m® :=k or k+1 to obtain m® +1 —v(e) —2 =0,
hence, conforming m°
done

else k+1—v(e) —2>0, (non conformity), then choose
k+1—wv(e) —2 additional points Q; € (int )N (T1 NT),(2.56)
different from the original P;,
define m°® := k; goto (*)

else choose k+1—wv(e) different points Q; € (inte) N (T1 NT), (2.57)

and Q; different from the original P;,

define m® :=k
(*) for Q; in (2.56),(2.57) define

u(Q)) = 5@ (Q)) + w7, (@) - (258)

done

Remark 2.6.1. 1) For non conforming cases we always obtain m® > m — 1.
2) The extended degree m®, the corresponding additional points (); and the
values u!(@Q;) on one and hence on all edges e € T" are thus well defined.
3) Mind that totally m¢+1 = k+2 conditions are only possible,if exactly the
two vertices @1, Q2 and no other points are added, otherwise m¢+1 = k+1.
4) According to (2.50) we define the “same” points (); on every edge e € T
However, mind that for different edges e;,e; € T with e; Ney = @y, this
vertex @) is added only once to the final extended system NF.

5) The same construction as in Algorithms 2.1 and 2.2 can be used for vio-
lated (trivial) Dirichlet boundary conditions. To achieve this, the u" € U} is
extended as u® = 0in R? \ £2.

So, we obtain a unique p € PL.|., see (2.50), (2.49), interpolating in the
original and new points, P; and @; in Algorithm 2.1:
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p e PL.|. with (p)9(P),i=1,...,1(e),j=0,...,u, original,
vie) =p1 4+ e and p(Q;),j =1,...,m¢ +1 —v(e), new. (2.59)

As next step, we define a unisolvent combination (K, P¢,N¢) or (T, P%, N%)
by the following Algorithm. Since, for T € T" all the (T, Py, N7) are affine
equivalent to (K, P, ), the following construction is presented for (K, P, ).
The points @); in Algorithm 2.1 are understood to be affinely re transformed
from T to K. Again we exclude for a simpler presentation some exotic cases
by the following condition. This is, due to (2.24), (2.26) and since m > 0, cer-
tainly satisfied for subdivisions, affinely equivalent to triangles and squares.

dim P,, = dim P,,_1 + m+1 and
= dim Pp—1 +2m+1 for triangles and squares.  (2.60)

Algorithm 2.2 For a non conforming (K,P,N) an extended conforming
unisolvent FE (K, P¢,N¢) is defined. By Algorithm 2.1 and P C P¢ = P,
necessarily m—1 < m.. We use the conditions (2.48) -(2.50), Algorithm 2.1,
and determine a 7 unisolvent combination P¢ and N¢ s.t.,

Pm1CP G Ppe=P° = dim Pp_y <dimP < dim Pre and N C N°.

We employ the values u(Q;) for the new points in Algorithm 2.1, determined
in (2.55), (2.58).

input N, Qj, P, Pme, m° is the (modified) degree of the boundary
polynomial in Algorithm 2.1,
define N7 := N'U{8(Q;) : all new points Q; from Algorith 2.1},
see Remark 2.6.1, (2.61)
if |/\/'?| > dim Py, increase m® : = m° + o, > 0, minimal,
and chose o additional points Q;, in the interior (2.62)
of every edge e according to (2.57), s.t., possible by (2.60),
N = N UV new §(Q;)} satisfies [IN7| < dim Ppe,
goto (+)
else |N'| < dim Ppe, goto (+)
(2.63)

" Now we allow the derivatives included in A, but not in (2.52). It might be, that
this causes the following case |N7| > dim Ppe and o > 0 in (2.62.) By (2.49)
we have to reduce o by the number of conditions on e imposed in N and not
counted in (2.59). This is important for (2.65).
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(+) if N < dim Ppe , goto (¥)
else |N7?|= dim Ppe, N :=N7 , goto (**)
(*) choose enough additional new interior points S, € int(T)
s.t. N := N U{V5(S,)} satisfies |N®| = dim Ppe
(**) if N is unisolvent for Ppe,define N¢:= N* | goto (*¥*¥)
else move the new points Q; € e in (2.62), S, € K, s.t.,
N¢ = NU{V new 6(Q;),5(S.)} is unisolvent for P (2.64)
(**%*) define the local conforming interpolant for u® by
V P with §(P;) € NNN® define

W) (P) = WD (P),§ = 0,1,...,u(P) — 1; (2.65)
V Q) from Algorithm 2.1 and (2.62), (2.64) define

u(Q;) according to (2.55), (2.58); (2.66)
Y S, define ul(S,) :=u"(S,). (2.67)

done

Finally, we are able 8 to define the anti-crime transformation E”* by applying
I to the semi-locally defined u!* see Remark 2.6.1, 1), instead of u” directly.
The local FE interpolation operator I” is, defined ? in (2.31) based upon
(K,P¢,N°¢) instead of (K,P,N):

E":u" > Ul cu for Uh ¢ U as E'u h-:Ihuheu and
de
IRuglr =Y Ni(ug o Pr)(¢ ZNTZ )67, (2:68)
i=1
with Nf = N; for all the original ¢ = 1,...,d = |N|; here d° = |[N¢| > d,
the ¢¢ represent the new nodal basis for P¢, w.r.t. N¢ and Fr is unchanged
compared to (T, Py, Nr). We next apply I* directly to u”. In this case we
replace the N ;(u?) in (2.68) by N§ ,(u"), the values of the function and
derivatives of the original u". So we get, compare (2.65) - (2.67) the

(uM)9) (P;) as in (2.49) , (2.69)
uM(Q;) = ul|7(Q;) for Qj €eCT, (2.70)
uh(S,) :=uh(S,) as in (2.67) . (2.71)

Mind that the u"(Q;) = u"|+(Q;) and u”|r, (Q;) are usually different for
Qj€eCTNTy,and T # Th. Since P C Ppe and N¢ ( with N' C N®) is
unisolvent for P,,., we obtain

8 again this condition (2.64) only excludes a few exotic cases
% certainly I? can be applied to U directly as well, if all the N (u?oFr) = wa,i(ufj),
see (2.68), are defined; again this I” is defined strictly locally
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h,h _ , h h h h, h h _ th¢, h h
u"=u" V u" el ¢ U and E"u" —u" = I} (uy —u"). (2.72)

To prove the following Theorem, we need some results in [18]. For a non
degenerate family of subdivision 7" and T € T", let T be affine equivalent
VTEe ’Th and F: K - T, Fr := Frx = diam TArx+br = diam TAz+
b. Let T := {:1:/ diam T : z € T} with Fr . K—)T Fr = Fro = Arz +
by = Az + b. Then the local interpolation operators I : C'(K) — W (K)
and I" = I : C'(T) - W(T) are defined as, see (2.30),

d
Ixv = Tv = ZNi(v)(ﬁi for v: C'(K) - WJ"(K) and
i=1

I'y|p = ZN (vo Fr)-(¢io Fy' ZNT K = T, (2.73)
Fsz diam T Az + b VveCl( ) = WH(T ), TeT
d

9|3 =" Ni(vo Fr) - (¢i o Byt ZNT@ K T,

Bra=Az+b VoeCHT) »WT), TeT"
In fact, [18] introduce the operator norm
o= sup _Polplypcry/I9] 00z, (2.74)
O;éveC’l(T)
and show, cf (4.4.9)—(4.4.10), (4.4.23):

Proposition 2.6.2. For o polyhedral domain (2, a non degenerate fam-
ily of subdivision T", T € T", affine equivalent to a reference element

K,PN, T := {&/ diam T : z € T} let 0 < h := Toax diam T < 1,
€

x as in (2.32) and A := (ai;)}—, [AI® = max{|a;|}}m, A1 =
(ai_jl)?,j:l, [[A=L]|*° = max{|ai_j1|}z’-fj:1. Then there ezists a constant Crey =
C(K,P,N) s.t
- oo\! —11100\ ™
(T) < Crep (14 (A1) (14 [|ATH|) ™| det 4] */7, (2.75)
sup{c(T): T € T",0< h<1}=C(x,n,m,p,K) < .

Now, a simple combination and scaling of (2.75) yields, with 0 < diam 7' < 1
and (2.73),
. —m-+n o0 l
1ol w1y < o (Dllollgrry < Cres( diam T)=™+7/7 (14 ]|4])
X (]. =+ ”A71||Oo)m| det All/p”'l)”cvt(f)
< Gl ( diam T)™™PT |[v]| oo £2-76)
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In the following estimates we use analog to (2.17) the
Iy and [Pl gy, o= mas{llu®lur,y T T # 0},

7" Lhis indicates, that the definition of u® in E" requires

information from the neighboring T;. Below we want to apply (2.76) to I*u”.
Then (2.76) is transformed into

similarly ||u®||? m(
P

. _ l
bz llw iy < o@luM iy < Cres diam T-™HP (14 4]
x (14 A1) ™ | det AI/7 Jub |

< Cpep diam TP |lub |2,

(Tw)
) (2.77)
In fact, the neighboring ||u”(| . (T+) only enter via (1+ ( diam T)||A||*®)¢ <
(1 + ||AJ|*°)". This shows that the diam T} do not matter in (2.77).

In these last estimates the ||v]| oty and [lu®| o7 in fact only require

upper bounds for the values of functions and derivatives in the few points
needed to define the N;(v o Fr) in (2.73) and the Nf(u” o Fr) in (2.68).

Theorem 2.6.3. Choose, under the conditions 1 < n, 1 < p < oo, (2.34),
(2.48), (2.50), for the original (K,P,N) a new extended and unisolvent ref-
erence element (K, P°,N©). Define the values for u? as in Algorithms 2.1 and
2.2. Let | be the highest derivative required in the definition of I" and let the
local mapping (1), : C{TN) — W(T), be defined by replacing in (2.68)
Then the local E" |7 : U™ — W)(T), (E"uh)|r := Itul and its global (piece-
wise) extension E" : UM — Ul C U = W} (£2) are bounded. E" is an approz-
imate identity in the following sense: A constant C = C(P,P¢,N,N¢ p,x)
exists, S.t.

|| EPul — uh||’§V;(T) < C( diam T)(”_l)/p||uh||’;V1(TN) VT € T(2.78)

IB"u" — u"[§r ) < Ch("fl)/p||uh||’&/;(o)a (2.79)

11" B —u"[§ o) < Ch("_l)/p||uh||lﬁvg(n): (2.80)
||Ehuh||gvgo(n) < C(”Uhngvl}(n) + ||Uh||gl(9)) V' eu"

These results remain valid if the trivial Dirichlet boundary conditions are
violated see Remark 2.6.1, 5).

In (2.78) - (2.81) the h(»=1)/P could be replaced by

p—mAn/p  pl-1/p — pl=m+(n=1)/p _ },(1—m)+(n—1)/p

Since p > 1 this would yield no convergence for m = 2. So we keep the above
formulation.
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For Chapters 6 ff. we need (2.79) for W, (£2). For a polyhedral domain {2,

see (2.22), E" : U™ — Uy, hence the E"u" exactly satisfy the trivial Dirichlet
boundary condition, for curved boundaries, see Chapter 2.7.
Proof We use the norms in (2.17) and combine the semi-local definition of
EM I I" based on ul in (2.68) with the facts P C P¢,ul = I"uh Vu € P
and the following obv1ous equalities. The non-obvious estimate in (2.81), will
be proved below.

YD|r(P)[ =0 Vj=0,....0(P) =1, |(u" = ul)|r(S,)] =0

|(u" — ul
h—uM)|r(Q,)| < C(diam T)~ 1/,, I|u Y P, S, Q; € T2.81)

|(u

The third estimate (2.80) follows from the second, since I" is bounded and

h||W1(T )

I"Ehy —uh = 1"yl —uh = Th (1Pl — uh) = IV(Ehu —uh)

For the original and the new points P; and @;, S,, resp., (2.81) implies, in
particular for the evaluation of new function values in N§ € N¥,

INF(u") = Nf(uf)| < C ( diam T) VP [[u”|[§s 1,
We have applied I}' in (2.72) to u* and estimate [|I}(u? — u") || (o) or

||I£ﬁ”||’;V;(T) for 4" = ul —u" for 4l .= N5 (a"),i=1,...,d"

This can be achieved by applying (2.77) to the situation for the new
(K, Pe,N¢) or its I"u" extension. The ||uh||’él(TN) is, hence, by (2.77), esti-
mated by (2.81). So the combination of (2.77) and (2.81) yields, for m = 1,
the (2.78), (2.79), (2.80).

The missing part of this proof is the inequality in (2.81). Until the end
of this proof we use the notation h : diam T,z := P, andy := Q; € €
representlng old and new points in T with 6(P;) € N7,8(Q;) € N, hence,
the u"(P;), u"(Q;) are needed in (2.68). The Taylor formula yields

1
ul(y / (z + tk)kdt with fixed k:=y —z € R* (2.82)
0

and for uh € W2(02), see (2.4). With (u")' € Lp(7),k € Lg(v),1 < p <
00,1/p+1/q¢ = 1 and the segment v := Ty C € C T we obtain with the
Hoelder inequality

1
uh () / V(@ + th)kldt < Ol llz, - [Kllgr (2.83)
0
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with the g—norm ||k||, < hin R?. The trace theorem 2.1.3 yields the following
estimate

1Y Nz, < CH@MY 1 23 1" 6y by (24) and w” € W(T)

< ClN @MYl /Ph ety /%y by (2.44)

< ChVPWMY L,y < CRTMPI[utlwa -

The combination with (2.83) now yields the estimate
[u"(y) = u"(@)| < CR' P W) lle,xy < OB PNy gy (2.84)

This is applicable to all combinations of z,y € {P;,Q;} and via triangle
inequality to |u”(y) — u”(y)| as well for the cases y = Q; and y = S,. Since in
(2.55), (2.58) the u’(Q;) are determined as mean values of different U\hT,- (@j),

we have to replace the ||uh||’&,1}(T) in (2.84) by ||uh||’;V;(TN). We still can use
the same h since we integrate for the different T; along the same edge e of
length < h. This yields the necessary (2.81). [ |

Corollary 2.6.4. For a non conforming (K, P,N') the interpolation projec-
tor I", see (2.31) and the crime eliminating operator E" in Theorem 2.6.3
satisfy, for 1 < p < oo, the compatibility property

B I" u — ullwy () < Ch' MP|lullwy o) for u € W,y (2).  (2.85)

Remark 2.6.5. 1) For natural boundary conditions we do not have to worry
about their violation.

2) This shows that, after proving stability in the following Chapters the
equivalence for compatible approximations in [43, 44, 45, 46], [68], [53, 55, 54],
[56] are valid.

Proof The I" and I", defined for (K, P, N) and (K, P., N.) yield convergent
approximations, w.r.t. || - ||"3V1(Q). So Theorems 2.5.1 and 2.6.3 yield (2.85). m

2.7 Curved Boundaries

Until now we have excluded non polygonal boundaries see (2.1). Now, we
allow

2 €R? and let 9N € Clt,, t > 1, where , indicates piecewise
smooth functions, and let P = Pp,,—; with m > 1. (2.86)

In a first step we define an approximating 2":
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Choose points P; € 02 with distance < h for neighbouring points.
Include all “non-smooth” points on 812 € C! into these P;.

Replace 02 and 2 by 9" and N*: 9N" is obtained by
connecting the neighbouring P; € 0f2 by straight lines, thus (2.87)
defining the new edges e C 82". The polygonal 2" is then the
interiour of the 9N".

Choose a nondegenerate subdivision T" for 2" as above.

Then automatically the T € 7" are star shaped, for 7" see Figure 2.18.
We have to be prepared that the necessarily modified FEs will satisfy the

Fig. 2.18. Appropriate triangulation for a curved boundary

boundary conditions only approximately.
The discussion is restricted to (curved) triangulations and to only

K is a triangle, A requires on V € C K only (2.88)

m evaluations of functions and no derivatives on €,

this includes both vertices, see (2.92) below. Next, we present two different
possibilities to handle this case. For the "boundary FEs” (7, Pr,Nr) with
|T N 92| > 2 we change N1 or Pr: In the first case, see Figure 2.19,

replace N1 by interpolation conditions along the curved 912, (2.89)
instead of the straight boundary 802".

Otherwise, we use Fr defined for T w.r.t. 2" see (2.28), Figure 2.20, however,

replace the affine Fr : K — T by an isoparametric
Fh|po Fr: K = T., where F'|7 € Ppu_1; (2.90)

P = Py,—1 are the original (piecewise) polynomials, here of degree m — 1 as
in the usual FEs and F*, T, are introduced in (2.93). In this latter case the
basic functions ¢; o (F?|7 o Fr)~! ¢ P are more complicated functions.
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P,
P;
k=2
P,
Fig. 2.19. Polynomial interpola- Fig. 2.20. Isoparametric inter-
tion on 0f2. polation on 0f2.

2.7.1 Polynomial Interpolation in Points of 912

For the new triangulation, T", only elements T at the boundary 812 are
changed, see ( 2.89): For these elements T' we admit one or two vertex points
in T,NON", with T, := {vertices of T} . If T,,N0N" = {P.}, the (T, Pr,N7)
is still affine equivalent to (K,P,N). For two vertex points we modify the
Lagrange elements. For this case,

T,NnaN" ={p;, P.}, P;# P,, T, := {vertices of T}, (2.91)

we proceed in two steps. Choose a smooth parametrization z = z(s)
of 02 between P; and P, w.r.t. the arclength 5,0 < s < he, if pos-
sible s € C?™10,h.], see (6.26). Next choose m Gauss-Lobatto points
05y Em1,& = he(14937)/2, & = 0,&m—1 = he in [0, he, see Sections 4.2
and 6.2,in particular (6.14). Determine

0023 Pj == (&) = P} := Pi + §(Pe — B)/||(Pe — P;)||r2,
j=0,....m—1, Po=Py, P.=Pn_1. (2.92)

Replace the m function evaluations in the P} along the straight edge PP,
by the m function evaluations in the P;, j =0,...,m — 1, thus replacing
Nr by a modified N§ corresponding to one curved edge, see Figure 2.19. For
small enough h, the edge P;P. will be at most O(h?) away from the curved
part of 012 between P; and P, see [18], 8 ex.3. Hence Pr, N§ will be uni-
solvent simultaneously with Pz, N7 for small enough h. These perturbation
arguments show that the results in Chapters 2.5, 2.6 remain essentially valid.
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2.7.2 Isoparametric Polynomial Approximation

Although the Gauss-Lobatto points decrease, as far as possible, interpola-
tion and quadrature errors along the relevant boundary part of 02, the
accuracy can be improved by a method, established in engineering applica-
tions, which allows much more freedom. Particularly efficient is the isopara-
metric polynomial approach in (2.90). As in (2.91) we assume one curved

FT Fe¢
K - > -
affine

Fig. 2.21. Isoparametric mapping F=Fr: K T, F.:T —
Tey, F.oFr:K — T,

and two straight edges P;, P, and Fy P;, Py P, for T.. Well known results
of Ciarlet/Raviart,[25], Ciarlet, [24], and Lenoir, [41],allow, for appropriate
combinations, Ciarlet/Raviart,[25] the construction of a bijective, piecewise
polynomial mapping F* : 2" — Q" ~ 2 C R?, such that F* = id away
from the boundary and that 1 the boundary 812 is well approximated:

10 for compact B,C, the distance of A and B is defined as dist (B,C) =
max {maxzca : {min{|z —y| : y € B}}, maxyep : {min{|z —y|: z € A}}}. It
represents the maximal distance from any point of one set to the nearest point
of the other set.
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Definition of the triangulation T and the boundary 802" := Fh(00") -
Define  Fh: 0" — 0O ~ 2 | F® bijective, and a triangulation

T" in the following way:
choose " 00" and a triangulation T" for Q" asin (2.87),(2.91),
define (simultaneously) F* : Q" — Qh .= Fh(Q") C R?,

Th and T. € T such that

(4) let (F")|7 = id|r VT € T" with |T, N 02| <1 and
Ve C T with [eN 82| = 1 we also have F"|z = id|z,
(4i) let (F");|7 € Pppo1 VT € T" with [T, N682| > 1,
where (F);,i = 1,2, define the components of F", (2.93)

i) dist(FR(901),002) = O(h™), dist(F*(2M), 2) = O(h™),
e.g., realized by the conditions F"*(P#) = P; for
the P?, P; in(2.92),

(iv) ICE") lwm(any < C and [(F")) M lwmpary < C
independent of h,
(v) define the T, as T, = F*(T) VT € T" and

T=T.VTeT"with [TNndNR| <1 and
T. # T with [T N0Q| =2,

(vi) define T} := {T"} for the T" in (v), and 2k := U
T.eTk

As for non conforming FEs, the F" is only piecewise continuous with only
piecewise defined derivatives and gives rise to violated continuity . This can
be treated along the same lines as in Section 2.6, see Theorem 2.6.3.

The (2.93) defines an isoparametric subdivision, T*. We proceed by intro-
ducing isoparametric FEs, U", and, later on, an isoparametric interpolation
operator, I". We have to combine the affine mapping F =Fr: K - T € T"
with the polynomials F”|r : T — T., see Figure 2.21:

Starting with the original 7" defined for 2" in (2.87) and the F", T!
and 0% in (2.93), let

d
L{h = {uh : Qg = Fh(.Qh) - R : uh|TC = Z ;- ¢z o (Fh|T OF1T)717
i=1
@ €R Y T.=F"T) e T'}, and
||uh||’I}V;(Q?)as in (2.17) with £2, 7" replaced byF"(2"), T»

up = {uh eut :u"(P)=0,i=0,....m-1,
for all interpolation points along 82"}. (2.94)

The u” € U} violate boundary and continuity conditions.

If e C K denotes the edge mapped by the original Fr : K — T onto
P; P, then 002k := F"(Fr(e)) only approximates that part of 92 between
P; and P, up to O(h™). For the following interpolation process this might
have the consequence that some of the interpolation points P; € onk. j =
1,...,m—2,are P; ¢ NUAS and so u(P;) might not be defined. In this case,
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Theorem 2.1.1 yields an appropriate extension u® of u, to allow the evalu-
ation of u®(P;), see [18]. More accurate is an iteratively defined extension,
presented in [41]. In fact, we do need this extension for the error estimates
in the following Theorem 2.7.1 as well.

For the following analysis we need an auxiliary F,, which will allow to
satisfy the boundary conditions and define the interpolation operator exactly.
We use the interpolation operator I in (2.31) and choose

F.=((F.):)?, : 2" = 2 C R? such that
Fh=T1h F, .= (I" (F.);)%,) with
F"(0") = 2 + O(h™) and, replacing F" by F.,

F. satisfies (2.93) (i)-(iv) anddF,(2") = F.(002") = 802;  (2.95)
thus F,. has the property that in Figure 2.20 the part of 02 is the image
FC(HTE) C
012 of that part 0Tz of 9T, near €; again, the nontrivial construction of F, is
presented in [41]. We introduce ¢" (and sometimes use its inverse(¢")~1)

(@) ¢": Qs> F' (") as¢h :=FroF1:teNszxe FM ("~ 0,
(i) (¢M)7': FR") = 2 with t — ¢"(t) = O(h™) and (2.96)
(i) (@") —Ido = O™ "), ((¢")™") = Idpn(gny = O™ ).

With this ¢* and for

ul  FR(") 5 R, uh e Uh, V", we define new 4" — R as
a0 5 R, AM(t) == (uP o ¢")(t), and U = {a" : uP € UPY, (2.97)

analogously, the V['. Note that I C Uy, that is, the Dirichlet boundary
conditions are satisfied ezactly for 4 € UP. Vice versa

for f: 2 — R the f: F*(2") = R is defined as
f@) = f((¢") (@) = (Fo (")) (2), (2.98)

The F" in (2.93) can be used to define the isoparametric interpolation oper-
ator:

I":U:={u: 2R} - U" = {: 0" %R},ﬁu = (I"u) o " € U™
I"u|p = I"u|y asin (2.31) VT =T, € T* with |T. N3N" <1, otherwise
d

Tz, = 3" Ny(uo F*|z, o Fr,) - (¢i 0 (F*|z, o Fr,)™)
i=1

d
=Y NEWei= ¥ T.e TN (2.99)
i=1
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hence we have replaced the affine Fir by their components (F"|, o Fr.); €
Prm—1,i = 1,2, for those T, with two boundary points. Obviously, I" is again
a bounded linear operator as the original I", if the norms are now defined
w.r.t the 7* above. Furthermore, the original ¢; o (Fr)~! and N;(u o Fr)
have to be replaced by the more complicated ¢; o (F"|7, o Fr,)~! and the
still linear N;(u o F*|r, o Fr,).

Theorem 2.7.1. For 2 as in (2.86) define 2" as in (2.87). Let, for 0 <
h < 1, the triangulation T" for Q" satisfy (2.34) for some I, m,p. Suppose
Fh and T} are defined as in (2.93), with F"* piecewise of degree m — 1. Let

(K,P,N) be a C° reference element, let UM, Ul, I" and Ihu be defined as
in (2.94), (2.97) and (2.99) resp. Then there exists a positive constant C,
depending on the reference element, n,m,p and the number in x in (2.32)
such that for 0 < s <m,

llu = I*ullfym (o) < C W™ lulwp ),
||Ihu||'§V;(Q) <1+ C " 7)ullwp (o) Yu € W(£2) and
lu = I'ullye(ry) < C ( diam T)™ *|ulwm (1),

1T ullws(r) < (1+O(( diam T)™ ) [Jullw (1)- (2.100)

For p = oo, we have %n% || — ﬁU”W;’o(T) <C hmfsfn/p|u|Wm(Q) Vuce
c P
W (£2).

Theorem 2.7.2. Under the conditions of Theorem 2.7.1 (, the P automat-
ically satisfies P C WJ(T) N WHT), where 1 < q¢ < p,0 <1 < j) and for
T € Tr let Uh = {u" : u" is measurable and u" € U™ according to (2.94)
VT. € TI}. Then there exists a constant C = C(l,p,q,x) such that

Ju g gy < ORI /A=) b (2101)
for all u® € U™ and for all u" € V*. For p < q the (2.101) remains correct
for a quasi-uniform family {T"}.

Theorem 2.7.3. Under the conditions of Theorems 2.6.3 and 2.7.1 there
erists again an anti-crime operator, E,f, defined in full analogy to (2.68)
satisfying (2.79) and the exact boundary conditions.

Proof Away from the boundary we leave the construction of Theorem 2.6.3
unchanged. By (2.97) the 4" satisfy the Dirichlet conditions exactly, so we
are done.

At the other side, we can handle the boundary directly as well, see Figures
2.22, 2.23, 2.24, 2.25. We sketch this proof and omit some technical details.
Only in specific cases it will be possible to determine a polynomial p € Py, 1
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s.t. p = 0 on 912, the curved part of the boundary of {2 between the vertices
P;, P,, see below. So we choose another construction by combining the ex-
tended u”, see below, with two arbitrarily smooth functions ¢ and &*. The
goal is a crime-free u” with u"|po, = 0. We start with the construction of
ul
We chose a triangle T € T", the triangulation for the polygonal 2" ~ 2,
with [T N 87| > 0 and vertices P., P;, P.. As in Section 2.6 we increase
the number of points on € defining N, m® such that a continuous transition
crossing this edge to the neighboring triangle is guaranteed. This includes
the edges in T with [T N 82| > 0. As a consequence we obtain continuous
ul : " — R, however still violating u"|50 = 0.
Now, we modify this u” to the curved boundary 87T, to obtain a u”.
We use m — 1 := m® and the new P, as P,,_1 for the rest of this proof.
Accordingly, we choose the F* € P,,, 1 in (2.93) to obtain Figure 2.22. Here,

P,

Fig. 2.22. Isoparametry for 02

the straight 0T, = P; P, is mapped by F" st. 0T, = F"(9T,) satisfies
dist(8T,, 842,) = O(h™), compare Figure 2.20. We define the curved u”
according to Algorithmus 2.1, 2.2 and to the above definition in (2.94) - (2.99).
Due to (2.93) (i) we keep u” = ul* for |0TNON2| = 1. For |0TNAN| = 2 we give
the following construction, see Figure 2.22. With the above F* € P,,_1, s.t.
dist(0T,, 002,) = O(h™). let 0T, = F"(dT.) be the approximating curved
part of the boundary of a modified 7. This 7. is obtained by replacing in T
the 0T, by 0T, hence, 0T.NOS2? = 0T.NA(? = {P;, P.}, see Figure 2.22. Now,
we replace in N’% the m original boundary points, P; on 8T, by the F*(P;) on
0T, to define N7, . Lenoir [41] shows that for small enough h the unisolvence
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for T, N implies unisolvence for T,, Nf,. We can choose ¢ := ul|z,,ul €

jh
ul =l for z < z.

P,
I
x=0 Te = Tc(8) ZTa = Ta(s) T =x(s) h
Fig. 2.23. graph for u”(—) and u?(...) between P, and P
———
P, d=4(s)
l | |
T T T 1
=0 Tc Ta T h
Fig. 2.24. Correction term c. = u? — ul
E0.8) =20 =2als)
P, e
| | -7 | |
I T P T T T
=0 T ’ Ta z h
&(s,z) =z for z < x. P, P

Fig. 2.25. Transformation of z from Pe_f’ to P.P,

Ul in (2.94), s.t. (F*(P;)) = 0 for the m points F*(P;),j = 0,...,m — 1
on 6Tc and Fh(P()) = P(] = .Pi,Fh(Pm_l) = Pm—l = Pe (S 6Tc N 80’7' We
assume h small enough s.t. any ray in T, starting in P, intersects (2, and
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0T, in exactly one point. A combination with dist(F"*(9T,),82,) = O(h™)
shows that |[¢(P)| = O(h™) for P € 9T..

Next, we define a parameterization for 1 in T, by introducing the cl,¢"
below. First, we parametrize 9T, by its arclength, s, as z,(s),0 < s < h,
such that z,(s) = dist (P, z4(s)). Then, we parameterize 1 in T, as

¥(s,2),0 < s < ha, 0 <z <34(s) hence, ¥(s,zaq(s)) = O(R™).
Let the ray from P, to z,(s) intersect 042, in Z(s). We know that

za(s) = E(s), (s, za(s)), ¢(s, &(s)) = O(A™).

Next we define the two smooth functions ¢, £*. To this end we introduce a
smooth curve 9, C T, s.t. 9, is not tangential to P;P,, P, P, and separates P,
from 0T, and 0(2,.. We leave ¢ unchanged in that part of T, between P, and
0,- Between 9, and 0T, we modify it s.t. we obtain analogue local differences
as in the proof of Theorem 2.6.3. Assume the ray from P, to x,(s) intersects
0, in z.(s). We consider ¢ and define the ¢, £" along this ray for fixed s. The
actual ¢, extended to ¢ : [0, h], h > z,(s), E(s), is plotted in Figure 2.23 with
a solid line and § = d(s) := (s, z4(s)). We want to change it, indicated by
the dotted line, s.t. it vanishes in #(s). Now, define c/*,&" € C*[0, hy] % [0, h]
as indicated in Figures 2.24 and 2.25.

So let, for fixed 5,0 < s < hyg,

0 for 0 <z <z :=xc(s)
c(s,z) ;= { >0 for z.(s) <z < & :=3(s)
=06 := (s, z4(3)) for x = Z(s).

and

(s, z) for 0 <z < z.(s)
(s, z) =< (s, ), > xc(s) for z.(s) <z < &(s)
(s, Ta :=xa(s)) for x = Z(s).

For fixed s, the c(s,z) and £"(s,z) are monotone increasing in z. < z < 7.
Let TcQ be bounded by 90f2, instead of the above T, bounded by 0T,.. Then
¢ : T2 = T,. Finally

uh TP 5 T, ul(s, z):= @ — e (s,z) and uf(x,5) =0 on 812,.
Furthermore, we can use the estimates (2.82), (2.84), to prove that this u”

satisfies the boundary conditions and the estimates in Theorem 2.6.3. Since
(s,%(s)) parametrizes 12, we have solved the problem to define a u* € ;. m
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The usual approach in the finite element community considers essentially the
weak operator, A, and its corresponding weak bilinear form, a(-, -), see below.
Here we generalize this approach such that the generalized form includes the
usual finite element approach and the corresponding approach, based on the
strong forms of the operator, A, and the bilinear form, as(-,-). Throughout
this Booklet we we will often discuss the weak and the strong form. As we will
see in this Chapter, for a smooth enough situation the weak and the strong
form of an elliptic problem are analytically equivalent. For conforming FEMs
this is correct as well, even numerically. Both approaches yield the same
(linear) systems with the same coefficients. We will come back to this point
in Chapter 6.

There are two good reasons for this unusual approach: Firstly, via the
detour to the strong problem, the influence of non conformity can be nicely
estimated. This is a generalization of the approach in [18]. (Another possibil-
ity are the duality arguments as presented by Rachford/Wheeler, see [39].)
Furthermore, we do need this approach anyway for spectral methods which
we will present in Subsection 4.2.1.

Secondly, by combining the strong version with quadrature approxima-
tions we are able to re-interpret the results as a new class of collocation
methods for non-degenerate subdivisions. This seems not to be discussed in
the literature until now. We even can define methods of higher order. They
are important for path following of parameter dependent solutions of non-
linear problems. The study of turning and bifurcation points requires these
methods to avoid spurious solutions.

We present elliptic differential operators of second order, however in this,
Chapters 4, 5, and parts of 7 it would require only a simple modification to
include operators of order 2m, however more involved discussions to study
the different combinations of natural and prescribed boundary conditions.

3.1 Main Idea and Example for Finite Elements

We start with the simple, but characteristic combination of the Laplace op-
erator and Dirichlet boundary conditions:
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Example 3.1 For u € H?(f2) and Dirichlet boundary conditions, hence,
u € H} (), feL*N) and f € H~'(2), we define two operators, denoted
as strong and weak forms As; and A, = A and corresponding bilinear forms
as(-,-) and a(-,-), resp., as

A, HX(2)NHY(N) = L2(0),
A=A, : H}(N)— H ) and
a(--) : HY}(2)x H(2) > R by (3.1)
a(u,v) == < Au,v >g-1(0)xH1(Q)

/ VuVo+cuvdr Yo € Hy(12),
Q

Asu = —Au + cu,
as(-,-) + H?(2)NHy(2) x L*(2) =+ R,

as(u,v) = (Asu,v)r2(0) = / (—Au + cu)vdz, resp.
o}

here Vul(z) - Vol (z) = (Vu"(2))T Vot (2). The difference is indicated by ap-
propriate indezring, so As and A, = A. We have to distinguish the exact and
discrete strong and weak solutions ug and u* = 0 throughout the paper. Usu-
ally the context indicates the actual meaning, eg, a(ug,v) = fQ fvdz Y ve
HL () defines the weak exact solution. Nevertheless we introduce

Notation 3.1 We always use the notation ug and ul for the exact and
discrete weak or strong solutions, whenever the context indicates the actual
meaning. Whenever we have to distinguish the two types, we use

~

tip, 4" =0 and iy, 4" =0 for theweak and strong solutions,

resp. ' on its head, Uy. The weak solution tries to get rid of everything on
its head, Ug, by the sharp”.

The exact weak and strong solutions ug = Ug, or § = Uo are then defined,
resp., by

! to help the memory, the strong solution can carry something in the basket"”
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ug = Uy € Up := Hz(ﬂ) ﬂH&(Q) i Agug = —Aug + cug = f
& (o, V)2 = [ fodo = (£, 0)12(0) = S0 (32)
°

=/(—Au0 +cug ) vdr = as(ug,v)
o)

ou ol
= a(to,v) —/ 9 vds, =2 the outer normal derivative,
)

7] W 81/
:/ fvdz Y veL*2) and
Q

up € Uy := Hy(02) : alug,v) = / VugVu+cugvdz
Q
=< Auyp,v >H-1(Q)xH(2)= flv) Vwve H&(Q) (3.3)
We obtaion the same solution ug = g = g, hence

duo

as(ug,v) = a(ug,v) since / vds=0V v e Hy(2). (3.4)

an 61/
With the outer normal v = (v1,...,v,)T for 002 the Green formula yields

— [ovojwdz = + [, (0v)wdz — [, vwr;ds, hence (3.5)
Jo v0:(Bu)dz = — [,(8v)du + [, vvidsuds. )
This translation from the weak to the strong form requires partial integra-
tion and uo € H?(2). This is due to the Greens Formula. For this smooth
situation and v € Uy, := H(N) the (3.2), (3.3) are analytically equivalent.
Furthermore, we define the restrictions

al(-;+) = a(, Mmz(2)nmi(2)2 and Al == Ap2(o)nni(a), setisfying
< Alu,v >g-10)x 11 (2)= a|(u,v) = as(u,v) = (Asu,v)2(0)
Y u e H*(),v € Hy(12).(3.6)

Since Hj({2) is dense in L?({2), we may and do restrict, for Dirichlet condi-
tions, the test functions to v € H}(f2) and to vanishing boundary terms. For
these spaces C Hg(£2), the linear operators A; and A and the bilinear forms
as(-,+) : H2(2) x L?(2) = R and a(-,-) : HY(2) x H}(2) — R uniquely
define each other as in (3.2), (3.3). They even coincide for u € H?(2) and
v € HY ().

The basic idea for Finite Elements (FEs) is the following: We replace
the ug € Uy, v € Vp in (3.2), (3.3) by elements in finite dimensional spaces
U, Vi. They may or may not satisfy the above boundary conditions. For
conforming FEs they do and we assume U C U,, VI C V,, UM VI C
H'(£2). Then a(u®,v") : U} x VI — R is well defined. In this case, we
determine the weak solution u! € U} from
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uf € U : a(uf,v") =< Auf,v" >p- 1(2)x H(£2) (3.7)

/VuOVv +cu v dx = f(vh) VUhE]/é1 C Hy(92).

However, compared to (3.2)-(3.3) we have to realize an essential difference:
The conforming U, V] which we discuss here are subspaces of C(£2), but
not of H2(f2). So we are no longer allowed to transform (3.7) directly into
an analoge of (3.2), since as(-,-) : U} x V]! is not defined at all. So we have
to define an extension a and A, j, of a; and A, to Ul x V} and U} — VI
in the form

ug € Up = (A nul, v") 20y = at(ug,v") (3.8)
= Z /(—Aug +cul ) v de :/ fode = f(o") Vo' e VI
T 2

TeTh

To find the relation between the two equations (3.7) and (3.8), we apply
partial integration, hence (3.5), for every T € T". Then we obtain for general
uh e Ul

hds

Z / —Aul +cul vdaH—Z/

TeTH

_ LYY / " (3.9)

TeTh eeT

where v, is the unit normal vector to the edge e. Now we consider the transi-
tion from a triangle T} to its neighbour T, ,T; € T". We denote the restriction

of vh,u to T;, T, as v} = v"|1,, u? = uh|r, a.s.0. Then the above sum is

a(ul, o) = Z Z/ 6Ve (3.10)

TeTh eeT

h
(u,v" +Z/< %— hgj’)ds
Qul ul Oul
(uh,vh +Z/ ( ul 6y)+(vl’l—vf)6y ds

ecT €

u 11 )+ Z / (o [
ecT
Here [v"] := v"|7;|e — v"|r,|c and [Ou”/Ov,] := Ou"/Ove|T,|c — OuP OV, T, |,
denote the corresponding jumps of v" and du” /v, across e, resp. Conforming
FEs are continuous, hence, [v"] := v"|1,|. — v"|1, | = 0 and we have omitted
this term above. Since we only will estimate the absolute value of the last
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messy sum, see Subsection 4.1 and Subsection 6, we do not have to specify
the direction of du”/dv, more precisely. We see immediately, that in general
ay(ut,v") # a(u®,v") .

Mind that we have to modify the fe terms slightly for e C §£2. The Diriclet
conditions imply that v",u® = 0 in R2 \ 0.

Remark 3.1.1. So already at this early stage, we see : A close relation between
the a(-,-) and a®(-,-) : U} x VI — R is only possible if the FEs are chosen
s.t. along the common edges the [v"] and the [Ou” /dv,] disappear sufficently
often on e, not nesessarily in the same points Yo" € V] and Vul € U}

There is no numerical experience for separate conditions for Z/{,fb and V,f‘.
However if [v"] = 0, [0v"/dv.] = 0 Vu" € U], V] in sufficiently many points
the very efficient Doedel collocation methods for model problems are avail-
able. In some sense they define “super crime” FEs, see below.

So only under the wague conditions of Remark 3.1.1 we can expect similar
behaviour of the strong and weak discrete problems. Nevertheless we continue
to list both cases.

By introducing bases in U, V!, the (3.7), (3.8) yield, even for exact
boundary conditions for the v" € V', different systems of linear equations,
see (3.2).

We may re-interpret the equations (3.7), (3.8) by defining and applying
the projectors Q'*, Q. We obtain for (3.7)

Q" e L(HY(R), H'(2) N V') with
<Q"f - fu" >po@xm(z=0V " € V) and
< Q’h(Aug - f),Uh >H—1(Q)’H1(Q): 0V ot € V,? (3.11)

Similarly, (3.8) requires a strong projector Q..
Q" € L(Ly(2), L(2) N V') with
Q) f — f,0") o2y =0V 0" €V} and
QI (Aspub = F),0") 1) = 0V 0" € VP (3.12)
The last two lines in (3.11), (3.12) show that uf in (3.7), (3.8) solves
Q" (Apul — f) =0 and (3.13)
QM (Aspug = f) = 0. (3.14)

Remark 3.1.2. Tt has to be pointed out that Q' and Q) are defined
on different spaces, H1(f2) and L?(f2), resp. So an f € H () requires
information about v € H!({2) including Vv. E.g. we have for f := Au with
fixed u € H(£2) that
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< f,v >H-1(Q)xH(2)= / VuVv + cuvdxr =< Au,v >H-1(Q)x H1(2)}
2

but for f € L?(£2) no Vv needs to be considered in (f,v)r2(0) = [, fvdz.
In Q'sh we do not refer to Vv, but have, e.g.,

(Asu,v)2(0) = as(u,v) = / (—Au + cu)vdz.
e}

This difference is important for the approximate projectors Q'h and Q’sh, ob-
tained by quadrature approximations below. The Q;h allows the formulation
of e.g. Doedel methods. Under the wague conditions in Remark (3.1.1) ther
are chances for small errors between the weak and the collocation form.

For the case of conforming weak FE-methods we present their convergence
theory in this Chapter 3, but for general second order elliptic operators which
we are going to introduce now.

3.2 Elliptic Operators and Bilinear Forms

Before we study the generalization of Section 3.1 the general forms of elliptic
operators have to be introduced. This Section is in essence a list of definitions
for elliptic operators and the related concepts.

To avoid too many technicalities, we consider only 2 second order ellip-
tic differential operators in strong and weak form. They are related to the
corresponding bilinear forms and boundary operators.

Assume 2 C R" to be a bounded domain, 02 Lipschitz continuous.
Let the operators A, , A be defined as
Ay H3 () = Ly(2), A: HY(2) - H (), for u,v: 2 CR* = Rand

n n n
A= — Z 8j(a,~j6i u) — 26] (aoju) + Zam@i U + Ao (315)
i,7=1 j=1 i=1
for the strong version, and

n
< Au,v >H-1(Q)xH(Q)'= / ( Z a,-j(‘)iu(‘)jv + Z(aoju)@-v
2 =1 i
+ Z va;o0iu + agouv) dx (3.16)
i
for the weak version.

2 Using the standard multi-index notation ¢ = (i1,...,4,) > 0 with |i =
max{ii,...,in} and 0° = 8;,...0;, the general elliptic operator of order m
has the form Au:=— 3 &7(a;;0° u) satisfying Y. ai; €8 > €2,

[2],]7]<m [2]5]7]|=m
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Furthermore we introduce

n

n
Apu = — Z 0;(a;;0; u) with Z ai;&& > 6'|f|i € >0, (3.17)
i,j=1 i,j=1
|€]», the Euclidean norm in R™ and the A,,u, is denoted as the main part.
A generalisation to A : W) (2) = W;'(2),1 < p < oo and 4, :
W2(2) — Ly(£2) and test spaces V, = W (2) and Ly(2), 1/p+1/q=11is
possible as well, but will not be presented here.
To study the relation between the weak and strong bilinear forms, we

start with partial integration. With the outer normal v = (v1,...,v,)T for
00,

— |, v0;wdx = + [, (0;v)wdr — vwr;ds implies
2 Y9 2\9j an j

Jov05(aijOu)dr = — [,(d;v)a;;0u + [, vai;0juv;ds. (3.18)

Or we use the Gauss-Integral Theorem directly to obtain as a consequence
of (3.15), (3.20) and for v € H(£2)

(Asu,v)2(0) :/ vAsu =< Au,v >g-1(0)xH(2) —/ vByuds.
Q 0

The corresponding bilinear and linear forms a(-,-),as(-,-) are then defined
and related to A by

as(-,-) : H*(2) x L*(02) = R,a,(u,v) := /ﬂAsuvda: = (Au,v) 120,

a(-,-) : H(2)x H'(2) > R

a(u,v) := /Q( > i udj v+ ag; ud;v
7j=1

,j=1
n
+Y_aio(8i u) v+ agou v)dz and
im1

a(u,v) = /Q(As u)vdm+/89(Ba u)vds or (3.19)

= as(u,v) +/ (Byu)vds and
89

n n
B, u:= Z ujaijai u + lejaoj U. (3.20)
j=1

i,j=1
The corresponding a, (-, ), corresponding to A, see (3.17), is denoted ® as
main part of a(-,-), see (3.17). For (3.17), we obtain automatically

3 the m in a,, only indicates the main part of a(-,-), independent of the degree
m — 1 of the FEs.
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n
am (u,v) :== (Y a;;0; u 0; v)dr satisfies for 0 < a1 < az, 0< f1 < fa
iyj=1

a1|u|§{1(9) < ull2, = am(u,u) < a2|u|§{1(9) and (3.21)
Bullulls oy < Nl < Balluligs gy Vs € HA().

We call B, the “induced” natural boundary operator. Bu =u = 0 and
B,u=0 on 9f2 are denoted as Dirichlet and natural boundary conditions.
For the special case of Example 3.1 we obtain:

Asu = —Au + agou induces B, u = Ou/dv.

We use the notation B, since this boundary operator is induced by a(-,-).
The relation of B, to e.g., Dirichlet boundary conditions is visible in (3.20)
and is discussed in the textbooks on PDEs, e.g., [38, 18, 17]. Indeed, this
B, (u) is well defined by the trace operator (B, u)|sn for u € H?(2). By
the standard trick v := u — @ with w = ¢ or B,u = ¢ on 0f2 we obtain
homogeneous boundary conditions exclusively studied in this Booklet. An
extension to parts of 92 with different boundary conditions is presented in
most textbooks, e.g., [18], and can therefore be omitted here.

Dirichlet and natural boundary conditions, are realized as

Uy =V = HY () and Uy = {u € H*(2) : Byu|sg = 0}, resp.
and are combined with V, =V = H*(12). (3.22)
Sometimes we denote these boundary conditions as Bu and Byv for U, and
Vy, resp. For this general case again (3.6) is valid.
Obviously, we have introduced above continuous or bounded bilinear forms
and continuous or bounded linear operators. That is:
Positive constants , C, exist, s.t.
la(u,v)] < Cllullgr@)llvllm (o) Yu,v € H'(2) and
las(u,v)| < Cllullaz)llvllrze) Yu € H*(2),v € L*(2) and
”A’U/”H—I(Q) < C”’U/”Hl(g) Yu € HI(Q) and (323)
lAsullre(ey < Cllullpegy Yu € H*(£2).

The following concept is only defined for weak bilinear forms or operators. It
plays a central role. A coercive bilinear form has the following property:

a positive constant ,C, exists, s.t.

a(u,u) > C||u||fql(9)Vu € H'(2). (3.24)
A coercive bounded bilinear form introduces a norm, ||-||,, which is equivalent
to the norm ||-|| g1 (q), see (3.21).For the special case Au = —Au, or a;; = d;;

the corresponding ||ul|,, is denoted as energy norm. The estimate of the semi
norm or energy norm |u|g1(q) for u € Hg(£2), see (7?) as well, is based on
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Lemma 3.2.1. For star shaped 2 C R™ there ezists a constant C' such that
Clloll a < [olas () + |/ vds| ¥ v e H'(2) (3.25)
a0

The proof in [18], (8.2.20)Lemma, is valid for our more general conditions as
well.

Remark 3.2.2. 1t is important to realize the impact of the boundary condi-
tions: In fact, the following two equations in (3.26) yield, for f € L?({2), the
same solution, ug, if and only if one of the following conditions is satisfied,
see (3.19): Either wug satisfies the natural boundary condition B, (ug)|sq = 0.
Then the boundary term in (3.19) drops out Yo € H(§2). Or ug satisfies the
Dirichlet boundary condition (ug)|sp = 0. Then the boundary term in (3.19)
drops out only Vv € H} (02).

For H}(£2) and H (2)NH?({2) we determine the weak and strong solution
ug by the condition
uo € Hy(£2) : a(ug,v) =< f,v >g-1(q)yxm(n) Yv € H'(2),and
uo € Hy(2) N H*(2) : as(uo,v) = (f,v)r2() Yo € L*(12), (3.26)
hence Aug = f € H7'(2) and A,ug = f € L*(2), resp.

Depending on the boundary conditions, the equality, see (3.19),

a(ug,v) = /Q(Asuo)vd:c + /(m(BauO)vds = /Q fudz Yv € H(02)(3.27)

can be used in one or two steps: Firstly we insert v € H}(£2) and delete the
boundary term. This yields Aug— f =0 € L2(2) or Aug—f=0€ H~1().
For Dirichlet conditions with ug, v € H}(2) = Uy = V, we are done. Natural
boundary conditions require a second step: With V, = H'(£2), we obtain
for arbitrary v € H'(12), or v|pp € H'/?(802) that [, By(ug)vds = 0. This
implies, B,ug = 0 on 9f2. This fact is the reason for the denotation of natural
boundary conditions. We collect this procedure as

(3.27) Vv € H} () implies Aug — f =0 € H'(2); this and
(3.27) Vv € H' () implies ug € H(2) or Byuglag =0. (3.28)

If, more generally than in (3.19),

f(v) :=/gfvdx+/{m puds

then the above discussion implies (B, (u) — ¢)|an = 0.
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3.3 Convergence for Conforming Finite Element
Methods

In this Section we prove the convergence of conforming or crime free weak
FEMs for the case of second order coercive elliptic operators. The non coercive
case is included as special case in the results of Chapter 7. For the general
operators in (3.20) we determine the FE solution, generalizing (3.7).

ub e Ul : f(o) = a(ub,v") =< Aul, 0" >H-1(2)xH1(2) (3.29)
/ ( Z a;;0;uf;v + Z(aoju)(‘?jv + Zvaig&-u + agouv)dz ¥ v € V.
| j i

For Dirichlet boundary conditions we have then V! C H{(12). Again (3.30)
can be interpreted in the form (3.11). The P", Q'*, are either interpolation
or truncation or projection operators, see (2.31), (3.11). Here we assume that
no variational crimes spoil the situation. Then we have the basic result

Lemma 3.3.1. Cea Lemma: Let U C Uy, V] C Vy and assume A" :=
(thA|ul:1)’1 € LI ,Ul) and let ug € Uy, a solution of (3.26), exist. Then

ul € L{,f, the unique solution of (3.30), exists and we obtain the following
error estimate:

luo = wller < (14 ClATyr ol 1Q " Algg) ™ Ny )
x| = PPllyculluoll:— (3.30)

Remark 3.3.2. In Theorem 7.2.3 we will show that under rather general con-
ditions the existence and boundedness of (A")~! = (Q "Aly»)~" € LV}, U)

implies the existence of A=! € L(Vy,U), and hence the existence of a
unique solution ug € Uy, as well. We use the notations A* = @ hA|M;L and

Ab = QM Ayl
Proof We estimate

lluo = ugller < lluo — P uollu + [P uo — ug |l
< = Py |luollee + [P ug — ullu-

To use (thA|u£L)_1 = (A"~ we compare
AP(PPug — ul) = APPPug — AMul = QP AP My — QM f
= QM AP ug — ug) = AM(P ug — o)
implying

! _ !
1P 0 — gl < Q" Alup) ™ logp oy 1@ " Allvreea - 1T = PPlluss - [Juoll
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and finally
lluo — gl < (1+CIIQ ™ Alyp) ™ llygp ym 1AIIvr20) -1 = PP {leges - lfuo -

The discrete coercivity or inf —sup — results for the cases of Dirichlet
or natural boundary conditions and a(-,-), are presented in the following
Theorem. This applies to violated boundary conditions and continuity as
discussed in Chapter 4 as well. For the general case of non coercive a(-, ) the
stability proof is delayed to Chapter 7.

Theorem 3.3.3. Let A, a(-,-), a”(-,-) and Dirichlet or natural boundary
conditions be given as in (8.20) and let Ul, VI be approzimating (conforming
or non conforming) subspaces for Uy, Vy, e.g. satisfying Theorem 2.5.1. Then
a Up-coercive continuous a(-,-) implies, for U} = VI, again the U} -coercivity
of a(-,-), so there exists a constant a > 0 s.t. e.g.,

a(u",u") > a(llut | o)) V U3 (3.31)

For U} # V}, the uniform discrete inf-sup— condition is satisfied. So, there
exist €,€' > 0 such that both inequalities

sup |a(u®, o")|/|[0"[} > ell|lf; Vu" €Uy, and
0F£vheVh

sup a(u, o")|/|[u"lf > €l Vot € V!
0F£uheUp

are satisfied. The Uy-coercivity of a(-,-) implies the unique existence of the
ezact and discrete solutions uy and ull.

Proof We present a direct proof for conforming and nonconforming FEs.
We start with the conforming case and Dirichlet and natural boundary con-
ditions.. Then U = V! C U, and thus the U} coercivity of a(-,-) is an
immediate consequence of the U coercivity.

Instead of U}, V] often different spaces of discrete ansatz and test func-
tions are chosen, hence U # V! C U. Again the discrete inf-sup— condition
(2.15) is reduced to the U} coercivity : For u” we need a close by v € V.
This exists since u* € UJ! C U, and approximating V' C U, approximates
Uy. Therefore for small enough h

sup |a(u®, o")|/[[v™[|% > la(w”, vp)|/lloglly > allu®||f /2.
0£vheVh

For the sup g syncypy la(u”, o")|/|[ut(|f; we start instead with v and choose
uﬁ = Tho,. [ |
Theorem 3.3.4. For a Uy coercive a(-,-),Uy C H'(2), and U}, V] a se-

quence of conforming FEs as in Chapter 2 choose P" in (3.30) as the
global interpolation operator I"as in (2.81). Then the exact weak solution
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ug € H™(2) and ug the corresponding FE approximate weak solution in
(3.30) exist and satisfy

lluo — ug || (2) < CR™Hluol | m (a2 (3.32)

Proof : We obtain (3.32) as an immediate consequence of Theorems 2.5.1,
3.3.3 and Lemma 3.3.1.



4. Finite Elements with Variational Crimes

The approach which we present here is aimed to cover variational crimes for
FE and spectral methods. We start with a list of variational crimes demon-
strated for the Laplacian in Section 4.1. Then we give in Section 4.2, the
main discretization ideas for FE and spectral methods specified for the case
of variational crimes. After discussing linear problems we present the familiar
version for the FE community based upon bilinear forms. Nonlinear problems
are indicated. In Section 4.3 we develop the appropriate general discretization
concepts for FEs and spectral methods.

4.1 Variational Crimes for a Simple Example

We have indicated already in the Introduction the need for variational crimes.
Indeed, we want to present, modifying the original FE approach from Chapter
3, five major types and various combinations of variational crimes. We start
with the simple Example 4.1, see Example 3.1, and extend it afterwards to
general elliptic operators. In this Section we assume

2is a polygonal domain.

We mainly consider the influence on the corresponding linear operators, the
bilinear forms and the boundary terms.

Example 4.1 For u € H}(f2), hence Dirichlet boundary conditions, and
f € H-Y(02), the operator, A, and the bilinear form, a(-,-), are

A:HYH Q) = H Y 2) and a(-,-) : Hy(2) x H*(2) = R with (4.1)

< Au,v >g-1(9)xH1 ()= o(u,v) = / VuVov+cuvdr Yo € HY (),
o)

resp. The exact weak and strong solutions ug are then defined resp., by the
following two equations

ug € Uy := Hg(2) : aug,v) =< Aug,v >g-1(0)xH1(2) (4.2)
= [, Vuo Vv +cupvde =< f,v >g-1(0)xm (o) Vv € HF(2)
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and by Green’s Theorem, see (3.5), and with the outer normal v to 92, see

(3.2)

uo € Uy := H*(2) N H(2) : as(uo,v) = (Asuo,v)12(0) (4.3)
= / (—Awug + cug)vdz :/ fvdz Y v e L*(N)
Q Q
auo
= a(ug,v) — — wvds
( 0 ) an ov

= a(ug,v) Vv e Hi ().

Remark 4.1.1. We point out once more, that it would be enough to test
As,as(-,-), A, a(-,-) by the same v € V,. However, V}, is considered as subspace
of different spaces, hence

(Asu,v)r2(0) = as(u,v) V v €V, = Hy(R2), dense in L*(£2) versus
< Au,v >H-1(Q)xH!(2)= a(u,v) Y v €V = H&(.Q)(Zlﬁl)
For Dirichlet or natural boundary conditions , the test functions are v €
H}(£2) or duo/dv|sq. Then the above boundary term [y, duo/dv vds = 0.
As in Chapter 3 we replace the ug € Uy, v € V, in (4.2), (4.3) by ele-
ments in finite dimensional spaces UJ!, V. However, now these subspaces
usually will violate the above boundary conditions (or even the continuity),

so Ul ¢ Uy, VB ¢ Vi (or even U ¢ U, V] ¢ V), see (4.16)). We determine
the approximate weak and strong solution ul € U} from

a(ul,vh) =/ Vul Vol +cul v dz = f(v") Vo € V! and (4.5)
2

al(ul, o) = Z /(—Aug +cud Whdr = f(o") Vot eVE (4.6)
rerr T

Again as in chapter 3, the relation between weak and strong discrete problem
is governed by the errors in (3.9),(3.10). Now V! C Vy and U} C U, are
violated. We introduce the modified projectors

QM e LV, V) by <Q™Mf—foh > =0V v* €V} and
QF e LUV, VE) by (QFf — f,o") 202y =0V o" € V] (4.7)

Mind that the Q" Q* are tested only in V}'. Whenever A, A, , are defined
on Up, then (4.5), (4.6) require to determine the weak and strong discrete
solutions as

ub e ul; < th(Aug —f), " >Ha-1(o)xH ()= 0V v € VI, and (4.8)
ul e Ul (Q (A pult — £),0")12(0) = 0V ™ € VI, resp. (4.9)
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For the different types of non conforming FEs, we have to admit violations
of the above assumptions U} C U, Vb C Vyand U} ¢ UV} ¢ V. The
a(u”,v") has to be defined on U* x V}'. Then the spaces do not fit anymore.
The influence of the non vamshmg boundary term [, Ou”/0v v"ds, see

ov,

n (3.9),(3.10), have to be studied carefully This 1s caused by the problem:
(4 2) characterizes the solution ug of —Aul +cul = f only in Uy x V, but
not in a Uy x Vy if the boundary conditions for the v € V, or the continuity
or differentiability across the interior boundaries, e, should be violated. In
fact, in FEMs the “detour” via the strong form Asugq = f, compare (4.3)
and Remark 3.2.2, is only used to estimate the violation of V! ¢ U, or V] ¢
V. For finite difference or spectral methods it is employed by approximate
evaluations of A, see 3) below. A quadrature approximation of the strong
forms, see 4), allows a re-interpretation as collocation method, see 5), e.g. the
Doedel collocation

For Example 4.1 we find the following five cases. We denote the first two
cases as:

Non conforming Finite Elements:

1) Finite Elements violating the boundary conditions: Let U, V] C
HY(2), with Ul Vh ¢ H}(2) B(w") = Bi(v") = v"|sqa, or more general
operators

(4 27), and its corresponding interior boundary term [, v} [3” ] +[vh]g,’f ds

U = {u* e cu : Bwh) =~ 0} ¢ Uy and (4.10)
Vh={oh eV cV:B(v") =0} ¢ V.

This case occurs e.g. for finite elements where u” : 2 — R™, and, e.g., for
Dirichlet conditions, u"(P;) = 0 only in certain points P; € 842 or even only
close to 012 forcurved boundaries, see Section (2.7). Still the original bilinear
a(-,-) and linear forms f(-) are defined in 4" x V* and V*. The exact and
approximate solutions, ug € Uy and ul € UJ, solve,

a(ug,v) = f(v) Yv € Vy, a(ul,v") = f(u") Vo € V] (4.11)

Mind that in contrast to FEs v" € V, for our v* € V! ¢ V, the second
condition a(ul,v") = f(v") V o" € V! is no subset of the first condition
a(ug,v) = f(v) Y v € Vy. So we have to be prepared to pay for this extension
from VI C V, to V] & Vs, see (4.13).
By (4.3), we obtain, mind that —Au" + ¢ u” is not defined on 12,

al(uh, ") Z/ —Aul +cul) v de Vol € V], (4.12)
TeTh
ouh
h o hy _ - ZZ h
a(u”,v") = a uU+Z/U1[ ] /zm 61/Ud8’
eeT
since [v"]|]e = 0. Here v, is again the unit normal vector to the edge

e and [v"] and [Ou”/Ov,] the corresponding oriented jumps of v" and



58 4. Finite Elements with Variational Crimes

Ou” /v, across e, resp. Since we only will estimate the absolute value of
>eern [, " [0u”/Ov ]ds we do not have to specify the direction of du/dv,
more precisely.

For the weak exact and discrete solutions, here ug € H%(£2) and ul € U},
resp., we find as a consequence of (4.3) that

6U0

o B0 vhds — f(v™)

a(ug — ul,v") = (= Aug + cug, v") +

= / % vhds ¥V ot € VI (4.13)
an 61/

In this case the additional term in (4.27) does not show up. For ug € H2(12)
the Qug/Ov and the v" are continous along edges e € T". So, for v € V}!
violating the boundary conditions, we have to expect a(ug — ul, v"*) # 0 for
a general v € VI ¢ H}(02).
For the strtong exact and discrete solutions, here ug € H?(£2) and ul € U},
the situation is simpler: A cobination of (4.3) and (4.6) yields

as(up — ul,v") = (= Aug + cup,v") — fW*) =0V P € V. (4.14)

Here, and in the following cases 2) - 5) we compute the a(uo —ul, v") and

their generalizations. In (4.13) a detour via the strong operator (Ayuo, v")2(q)
(, well defined,) is the basic tool. We will then estimate the differences,
a(ug — ul,v"), in Chapters 5 and 6.

2) Finite Elements violating the continuity conditions: Let UP, V] ¢
H' (), e.g. , we have non continuous FEs: They are defined on a subdivision
T" for a polygonal 2, discontinuous across the edges e, more generally,

up = {u" euty ¢ u, VP = {v" € V*} ¢ v discontinuous across e(4.15)

This happens for non conforming finite elements, e.g. the Crouzeix-Raviart
FE, [18, 17].

Although the strong equation is not needed directly, we formulate it here,
to allow an appropriate notation for both cases. This will be needed for
Section 4.3. For (4.15) the original norms, e.g., || - [|z1(), the bilinear and
sometimes the linear form as well, a(-,-), as(-,-), f(-), are no longer defined.
They have to be replaced by extended || - |31y, a"(-,-), a2(-,-), f"(),
defined for u” ¢ Uy, v ¢ V! separately on the T € Th.

We start with the a"(-,), a®(-,-) : Ul x VI - R Let

at(uh, ") = Z /Vuthh+cuhvhd:c (4.16)
TeTn?T

al(u o) == Z /(—Auh + cul ol dz (4.17)
TeTh T

both defined V u” € U, v € V}.
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To avoid over indexing, in the FEM community the same notation is used
for this original and the extended bilinear form a”(-,-)

al(-,-) : Ul x VI - Rand a(-,-) : {Up UL} x (VU VE} = R, (4.18)
continuous with a(-,-) : Uy x Vp > R

and identical witha(,-) = a”(-,*)|u, xV, -
We proceed similarly for the a(-,-) in (4.17) and the @"(-,-) in (4.42)
al (), @) AU VUL x (VUV} > R, (4.19)

where @"(-,-) is only defined on smooth enough subspaces of Uy x V4. The
restrictions to Uy x Vj satisfy

ah(': ')|L{b xVy = a(': ) and ag('v ')|Ub><Vb = as('v ) (420)

In Section 4.3 we will consider variational and classical consistency errors.
The variational consistency error is usually defined via the bilinear forms, e.g.,
the a”(-,-), a?(-,-), @a"(-,-), a(-,-). The classical consistency error relates
the operators A, A, : Uy — V; and their discrete counterparts. In our case
of piecewise continuous FEs, the A and A, are not defined for the u" €
Z/{,f‘, similarly below. At the other side, we need for the classical consistency
machinery a relation between the original operator, A, or a close relative,
Ay, and its discretization, A*. So we define, in full analogy to the extended
bilinear forms in (4.18), (4.19), extensions, Ap, Asn, of ! the A, Asu, see
(2.17), (2.18):

For u® € {Uy UUP} we define Ay, A p : {Uy UUPY — {V} UV} as

< Apuh, P >}Ilf;1(9)><Hi(ﬂ) := al(uh,v") Yol € {Vy UV}, hence,

= Z Vul Vol +culotde, (4.21)
Ten T

(As pu™, ") p2(g) == al (uP,v") Yo" € {V, UV}'}, hence,

= Z /(—Auh + cuM)v" de and (4.22)
Ten T
Ap, Agp s {Uy UUPY = {V) UV} are continuous with A, A,.

Similarly to the notation and the restriction of the above a”(-,-), a?(-,-) in
(4.16), (4.18)-(4.20), we use the same notation for the different restrictions
of the Ay, A, . They satisfy

! in contrast to the a”(-,-), a®(-,-) a.s.0., we use the index 5, to denote the extended
operators as Ap, As . This allows the appropriate notation for all the discrete

!
operators as A", AP .Ul — VP
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Anlu, vy = A5 Anlyppin = AP, and (4.23)

— — Ah
As,h'?/lb—ﬂ/i - As; As,h|u;w_>1);h — As

To determine the discrete solution, ul, we restrict the Ay, Asp to
Ap, Agp + UM — VP In fact, in the standard approach, the bilinear
forms, a”(-,-), a®(-,-), directly define the discrete linear operators A" 6 A" :

Uupr — VI, for fixed u € U} by

uh e Ul - < APyl ol >’Il{;1(Q)XH}L(Q):: a(ul, o) Yol € VI (4.24)

u el (A" ") 20y = al (Wl o) Yol € V. (4.25)
The A, As,p are related to these operators A", AP in (4.24), (4.25) as
AP = QM Aplyp and A} := QA - (4.26)

This is needed in the further discussion.

Certainly Q" f is defined for any f € V}, e.g., Q " Au. In this case, Q"
requires inappropriately testing by v" € V,? ¢ Vp. Sometimes this discrepancy
might cause variational crimes, see (?7). We handle them, not by comparing
Au and A"yl directly, but by using the ”detour” via the strong problem.

Below, see 3.), we will even approximate the integrals [, Vu! VP +
cu® v* dx by quadrature formulas.

Analogously to (4.3), the a”(-,-), a”(-,-) are related as

s

al(uh o) == Z (/(—Auh +cul ) vtdr Vol € V], (4.27)
et 7T
ouh ou
h kY — _h( h h n|OU” ou” h
a(u,v") = ay(u ,v)+§ 6111 [Bye]ds)+ o Ov v"ds,

Then ul € U} is defined as (weak) solution of
a(ul, ") = f(") ¥V o" € V], sometimes f"(v") = Z / f v"daf4.28)
reTr’T

By combining (4.11), (4.16), (??), (4.28), we obtain, see (4.13), for uy €
H?(12),

a(ug — ul 0" = Z dug vhds = Z %[vh]ds. (4.29)

rern Jor 9V cern e Ove

Similary to (4.13) the additional terms in (??) drop out sice dug/dv, is conti-
nous across the edges e. If the boundary conditions are violated in V! as well,
the corresponding term from (4.13) has to be added. If we assume v" = 0
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outside of the 7' € T" this is even included in (4.29).

Similarly to (??) we find again

a(ug — ul, 0" = Z /(—Auo + cug)vdz — f(v") =0V " € V}4.30)
e’ T

3) Approzimations for the A(+), As(-),a"(-,-),al(-,), £(-), f*(-) : Indepen-
dent of violated boundary conditions or continuity, we allow approximations
to the original or extended linear operators, bilinear, linear forms, pairings
and scalar products, the Aul, A uh) al(uh o), al(uh, o), f(h) fr "),
< f,v" >, (f,v"). These approximations may be quadrature formulas, see 4)
below, divided differences, or Fourier collocation derivatives and de-aliasing
techniques for spectral methods. We denote these approximations as Ay, fls, hy
ah-, ), @t (), fal), < - -3 -jh. We keep this notation for the extensions
to smooth enough subspaces of Uy, V. This allows the necessary evaluation
of functions and divided differences, analogous to (4.18), (4.19). Otherwise,
point evaluations, e.g., as needed in quadrature rules, are not defined.

First, we modify the projectors as

Qe V') by <Q"f = £,0"Sh1 0@y =0V v" €V}, and

~ ~ 1 ~h
Q) e E(V',V,?I) by (Qf — f, vh)LQ(Q) =0V v" eV, or (4.31)
Q" f— f1"Vhand @i f — f1MVL. (4.32)
Here the
ch ch <h <h
()= ')H;l(())xH}L(Q) and () = (;, ')L2(Q) (4.33)

indicate the piecewise quadrature or other approximations for the H, L) x
H; () pairing as in (4.16) and the L?(£2) scalar product in appropriate
smooth subspaces. As in (4.26), see Remark 3.3.2, we denote as

flh,fls,h the extended approzimations for A, Ag, see (4.21), (4.22),

AR A" the discrete operators A" := Q h/ih|u:, Al .= Q;"As,h|u;(4.34)

Similarly to the notation and extension of the above a”(-,-), a”(-,-) in (4.16),
(4.17), (4.20), we use the same notation for the different extension and re-
strictions of the A, A, 5. Mind, that again the Q'*, Q" inappropriately test
with v € V], thus causing crime errors. Instead of the equality in (4.23), we
find approximations

Ahlub_,v{, ~ A, and As,h|b{b—>v,§ ~ AS. (435)

Then the weak and strong discrete solutions are defined by
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ul el by Ayl = thfihug = Q"for (4.36)
< Q" (Apuf - f),UhS?q;l(Q)xH;(n) =0V " €V}, and
ub el by Ahul = lehfis,hug = Qlfor (4.37)

~ 1 ~ ~h
(Qsh(AS,hug - f);vh)Lz(_Q) =0V ’Uh S VI?? resp.

The most important examples for these approximations are

4) Quadrature approzimations and approzimate projectors th: The orig-
inal definition of the approximate weak solution u$ requires in (4.5)

a(ul, o) — fh(h) == Z Vul Vol + cul o — foldz
TeTh T
=0Vl eVt (4.38)

similarly for the strong solution. Non conforming FEs will be discussed in
more detail only for the following e.g. Doedelcollocation methods. We replace
the exact vanishing of the inner products in (4.38) by the vanishing of the
quadrature formulas. We start with

F@h:

~h

(f 0" = (f,0") (4.39)
Z Z wi f(Pi)o™(Pi) = (f,0") 12(0)

TeTh KeT

for continuous f and v". This is extended to the more general case, e.g., of
</f, P >H—1(_Q)XH1(Q)= / le \Y% P + fo’l}hdm‘ eR (4.40)
Q
(with [, fI, V v*dz = [,(f-1, V v")dz ) as

< fohSh = (FT, v o' 4 (fo, o) (4.41)
Z Z wi(fT(P) V v"(B) + fo(Pi)v"(Py))

TeTh PeT

~ < f,Uh SPrxyy -

Again this approximation requires continuous f1;, V v" fo,v" s.t. the eval-
uations in the P; are possible. Sometimes we replace f(v*) in (4.38) by

< fh, v* >h. Often, we only need the < Auh,vh3" part and have for f,v"
~h -
the (f,v") . Nevertheless, there are cases where the < f, vP 3" still is neces-

~h -
sary. But usually, we formulate the equations only for (f,v") = f(v").

Now we apply (4.41) to (4.38) and have defined a new problem. Determine
the approximate weak and strong solution ulf € U} s.t.
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. ~h .

a(ul, o) — f(") :== (Vubd Vo + culivh)” — foh) :=

Z Z w; (Vul Vol + culo" )(B) — (fo")(P;)) = 0 and4.42)
TeTh BeT
. ~h .

ay (ug, v") — f(0") := (= Aug +cug)e")” — f(u") =0V " €V},
resp. Again, the additional terms in (3.10) drop out, since for conforming
VI and ug € H%(£2) the v are continous and [0u/dv.] = 0 on the edges e.
The approximate projectors and discrete operators Q' ", QF and A" Q" are

defined as in (4.7), (4.34). For the weak solutions, the error, corresponding
to (4.13), (4.29), (4.42), has then the form

a (ug —ug,v") = Z (0 (Vuo Vo + cug v")(P))) — < f, v"3"
PjET

= Z (w;(Vug Vol + cugv™)(Py)) - < f, oSt
P;eT

- Z /T((VuOVvh%—cugvh))dm—<f, o >

TeTh
= (@"(uo,v") — a(ug,v")) (4.43)

F(<f, vt >h—<f, " SM) Vol eV

Similarly, we find for the strong solutions, ug and uf, if they exist,

il (uo — ult,o") = 37 (w; (= Aug + cuo W)(P))) — (f, M)

P;eT
= (@} (uo,v™) — al(uo,v")) (4.44)

H((F, oM = (F, ") Yol e VP

Both forms require smooth enough uo, f to evaluate Aug(P;), Vuo(P;), f(P}).
The estimates will be based on the quadrature errors in the last two lines.

Remark 4.1.2. In these quadrature approximations (4.43), (4.44), the quadra-
ture points P; 7 may be chosen totally independent of the interpolation points
for the FEs. This contrasts to the situation for the following collocation
methods. Here quadrature and interpolation= collocation points coincide,
see (4.49), below.

5) Collocation methods We obtain collocation methods in several steps.
We start with the strong problem (4.3) and consider the corresponding strong
solutions. Then we replace, as in 4) the integrals over {2 by quadrature for-
mulas, see (4.42). Next, we employ an interpolation basis for V}*. Finally, we
estimate the quadrature errorsfor the exact forms and relate the strong and
weak forms. This will allow to use the coercivity.
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We explicitly formulate (4.42) as quadrature formula for the strong bilin-
- <k
ear forms, if < f,v"S" = (f,0") , as

£ = 33 wif (Pt (P) =
TeTh BeT
at(uh, o) = 27— ((—Au +cuh,vh5|hT) (4.45)
TeTh

Z (Z wj(—Au" + cu)(Pj)vl(P)) Vol € V.

TeTh P,eT

To estimate the errors later on, we have to recall, see see (4.3), (4.27),
(4.13), (4.16), (?7?), (4.29), (4.42), that

o) = bt o) + @, o) — alut, o)
h
£ 3 ol [G] W5 s+ et o) — b o)

for FEs satisfying the boundary conditions (4.46)

h

+ additionally + / Ou vds
80 61/

for violated boundary conditions

The relation of the collocation formulation to the above weak quadrature
bilinear formulation, see (4 45), is given for the strong solution uf € U and

< fa ot >= (fa )L2(.Q
" (u,0") — b, o) = (ah<uh vh) ~a(u",v")

@bt ) - £ 3 [ot [ 5] as
e€Th
for conforming FEs (4.47)

+ additionally + Z / 81/

for dlscontlnuous FEs
h

+ additionally + / Ou vhds
an v

for violated boundary conditions .

The quadrature and the non conformity error terms [, dufl /0v v"ds and
> ecr [, Ouly /Ove[v"]ds have to be studied separately, see Sections 6.2, 6.3.

This shows that the difference a" (u”, v?) — @"(u",v"*) can be small only,if
the quadrature errors for a(-,-) and a”(-,-) are small and if
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[0")(P}) = 0 and [ -](@%) = 0 (4.48)
for sufficiently many points P!, QJ € .

To show the equivalence of the strong quadrature and the collocation
formulation we choose specific FE spaces V}': We assume the N in Definition
2.2.2 consists of exactly those d points used in (4.45). Hence, any v" € V}!
has to be uniquely determined by the v"(P;), V P; € T, VT € T". Thus,
with the Dirac delta functions 6(P;) Np = {6(P;): Y P, €T}, VT € Th.
So, the following straight forward definition can be used for conforming and
non conforming cases, see Definition 2.2.2 and (2.31). We assume:

T € Th,T = Fr(K) is affine equivalent to K and  (4.49)
(K, P, N)isaFE s.t. Np = {§(P;) : VP; € K in (4.42)}
induces a unisolvent basis A/ for P'.

Furthermore, we have to guarantee (4.48). If the P! are included in N7,

e
then automatically [v*](P!) = 0. However the next condition [BBL: (QH =0
does not directly fit to collocation. For later reference we formulate these two
conditions to define UJ*, V! as

B ‘
U := {u" € FEs : [%](Qg) = 0Ve € T" for sufficiently many points Q? € €} (driiD)
Vi .= {u" € FEs : [v"](P!) = 0Ve € T" for sufficiently many points P! €4e31)

This property has to be combined with a given set of collocation points in
(4.49). We have to guarantee that in fact a P, Py,—1 € P C Ppar, see (2.34),
exists, s.t. (K,P,N) unisolvantly defines a FE. We certainly have to show
that we are not talking about an empty set of methods and come back to the
Doedel collocation in the next Subsection.

For the transition from the quadrature formulation to the collocation, we
choose an interpolation basis vl € VI, see ( 4.49) below, s.t. v}(P;) =
8, VP; € TVT € T" . Due to the required unisolvense of (K, P, N),
see (2.31), and by (4.49), this interpolation basis is uniquely determined.
This fits to our earlier approach if this (K, P, N) defines, as in (2.31), the
global interpolation strictly locally. Then we we obtain the equivalence to
collocation and u} € U} is the strong discrete solution of

(4.45) <= a(ub,vl)— < fulS" =0Vl eV} = (4.52)
(—Aul +cub)(P)- < f,ohS" =0V P €TV € T" <=
(—Aul +cul —f)(P))=0Y P, €TVT €T" (4.53)

if < favh >= (f:vh)Lz(Q)a

hence, ( 4.53) represents the classical collocation method.
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Until now, no other realization is known to satisfy the necessary condi-
tions. The question is totally open, whether there exists unisolvent (K, P, N),
defining, as in (2.31), the global interpolation strictly locally. The set of these
methods is not empty if we are willing to modify (4.49) according to (4.50).
A very efficient example represent the following Doedel collocations.

4.1.1 Doedel collocations

Doedel collocation methods: Until now, only one class of collocation methods
is known, which satisfies (4.49) and (4.50). E.Doedel chooses, in our notation,

ouh

Ut = V" .= {u" € FEs : p"|(P}) =0 and[g]
( Pg) = 0Ve € T" for sufficiently many points Pei €e}
Up =V = {uh ed™ = V" . v"(P}) = 0VP! € 02} (4.54)

Then he collocates according to They work astonishingly well. However they
have one essential drawback: They are a kind of “super gangster” and vio-
late all kinds of taboos. Nevertheless, in cooperation with E. Doedel and B.
Goldluecke we have been able the proof the existence of a well behaved (non
local) interpolation basis for an important special case. We think to have
the necessary tools to give all the necessary results for the general case. For
general elliptic operators the method in in Section has to be considerably
modified. This is the goal of B. Goldlueckes dissertation.

4.2 Finite Element and Spectral Methods

We aim for the classical “stability and consistency yield convergence” ap-
proach for our context, see Chapter and, e.g., Stetter [57]. As motivation we
want to summarize and generalize the above FEMs and give a short introduc-
tion to spectral methods. We choose the corresponding general framework in
Sections 4.3 - 4.4, below, to include these and many other cases.

The examples in Sections 3.1, 3.3, 4.1 show the following: To analyze finite
elements in particular with variational crimes, we have to relate the approxi-
mating subspaces U", V" for the original U, V with linear operators, projec-
tors, linear and bilinear forms and appropriate generalizations. We list several
combinations for FEMs and introduce a general notation. To include all the
cases treated in Section 4.2 we choose the neutral notations of U,V, Up, Vs
and UM, VR U, V] for the Banach spaces and their discrete approximations.
The Uy C U and V4, C V are closed subspaces defined by appropriate bound-
ary conditions, usually with Vj = V'. Uy and V; and U}* and V]! are needed
to guarantee the unique solvability of the problem Aug = f. The same holds
for the discrete counterparts, e.g., A"ull = f* below.
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In the following two Subsections on finite element and spectral methods we
start with the linear problem Au = f and delay the nonlinear problem to
the end of the corresponding Subsections. In Sections 3.1 and 4.1 we had
studied the model problem A;u = —Au + cu = f. In this Section we want
to generalize the results to the case of general elliptic operators and bilinear
forms as presented in Section 3.2. We list the weak and strong forms of oper-
ators, bilinear and linear forms and projectors by using no index for the weak
form and the index ; for the strong forms and finally introduce the general
notation. We delay the study of the relation of weak and strong formulation
to later Chapters.

The weak and strong linear operators, A and Ay, and the boundary operator
B,, see (3.15), (3.26), resp., are

A:HYQ) » HY(Q) and a(-,-): H'(2) x H'(2) > R,  (4.55)

< Au,v >pg-1(0)xm1(2)= a(u,v) = [, ( Z a;j0; u 0j v

3,j=1

n
+ > agj udjv+
i=1

Ay H2(Q) = Ly(2)and as(-,-) s H2(2) x L2(2) > R, (4.56)
Asu == E 6j((l,'j8i u) - Z 6]' (aojU) + Z ai06z- U + agoU
j=1 i

i,j=1 i=1

aio(0; u) v+ agou v) dz and
=1

k3

as(u,v) = (Asu, U)LZ(Q)-
Natural (nat.) and Dirichlet (Dir.) boundary conditions are realized, with

n n
Byu = E v;ai;0; u + E vijaop; u, as

i,j=1 j=1
nat. Uy ={u€ H'(R): Byulsq =0}, with V =V = H' (1),
Dir. Uy, =V, = Hy(2) for the weak, and (4.57)
nat. Uy = {u € HQ(.Q) : Bau|3g = 0}, with Vy =V = LQ(Q),
Dir. Uy =V, = H*(2) N H§(2) for the strong problems.
More generally we use the form:

For A : Uy — V;, determine ug € Uy : Aug = f € V. (4.58)

As in (4.18), (4.19), we may have to extend A or A, to the piecewise Sobolev
spaces, Ay, or A, ;. Again we use the general notation, see (4.23), (4.26),

At U VUL — (V' UV with Aply—y; = A (4.59)

4.2.1 Finite Element Methods

In the next collections of formulas we present the linear forms, projectors
and bilinear forms as observed in the above methods, here generalized to the
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operators A and A; in (4.55) and (4.56).
We start with modifying the linear forms , see (4.2), (4.3), (4.41), (4.28),
(4.39),

(fvya-1(o)xm(2) €ER, V fe H Y 2),VveV=HY(N)
(fh,vh)’;lil(mwa) €R, VfeH (), VeV cHL(),
(From" € R,V he Cri(2),0" € Vi C CL(9),
(fs;0)p2() €R, Y fs € LX(2),0" € VI C L2(2)  (4.60)
(flo") 20 ER, ¥V f e L?(2),0" € VP c L*()
(7" € R,V '€ Ch(2),0" € VI C Cu(02).
In the general form we denote these cases as
{f,v)prxy €R and (f*,o")" € R, (4.61)

were the (f* v")" often is defined only in smooth subspaces V,,V, of V' and
V. The different (f,v)yrxy, (f*,v")* a.s.o., give rise to the corresponding
concepts of orthogonality

(
(

(f,0)a-1(02)xH1(2) = 0, indicated as f L v

(0" b1 () () = 0, indicated as f* 1" o (4.62)

(fh,vhgh =0, indicated as fhlhvh

(fs,v)12(0) = 0, indicated as f, L, v

( :,Uh)L2(_Q) =0, indicated as fsh J_Q ol
(f:vhjh =0, indicated as fshl:vh (4.63)
Again, more generally we use the notations, see (4.61),

f L v for the original and f* 1" v for the discrete spaces . (4.64)

These linear forms and orthogonality give rise to the definition of projectors,
on different spaces, see (4.31), (4.32),

Q" H,\(R) » VI c H,' (),
(@M F = 0" g () = 0 Yo" €VE & Qf— f LM VR,
QM : Cn() » V) C HTY(12), (4.65)
Q"= =0 Vot eV e Q- f1"Vp
QL) -V c L),
(QFf = £, 120) =0 Yo" €V} & Q) f = fLVE,
Qi Cu(2) 5 VI c L2(02),
(Qrf—£0M) =0 Voh eV e Q) f - FIVE
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or more generally, for all the above cases, we define
Qhe LV Vi by <QMf—foh>h=0 VoheVt  (4.66)

For FEMs and the real- (or, for spectral methods below, complex -) valued bi-
linear forms and operators are defined by replacing the [, Vuh Vol +culvhde
and —Au” + cu by the general forms a(u”,v") and Ayu in (4.55) and (4.56),
resp. Similarly to (4.5), (4.6), (4.16), (4.16), (4.42), (4.45), the (usually real
valued) bilinear forms and their discrete analogues are thus:

a(u,v) defined for V (u,v) € H (2) x H'(02),

a"(uf,v") defined for V (u",v") € HE(2) x H}(02),

a"(u",v") defined for V (u",v") € C}(02) x C}(12), (4.67)
as(u,v) defined for VY (u,v) € H*(R2) x L*(N),

a(u",v") defined for V (u",v") € HZ(2) x L*(12),

a"(u",v") defined for V (u",v") € CZ(2) x Cn(92).

In fact, all these al-,-),...,a"(-,-) are defined independent of the bounadry
conditions. These come in whenever the weak or strong problems have to be
solved. As above, the @"(-,-) and @”(-,-) are obtained from the a”(-,-) and
a®(-,-) by approximation, e.g., by replacing the exact integrals over the T by
quadrature formulas. More generally we formulate

a(-,) :U xV — R and a(-,-) :U" x V" - R, (4.68)

where we again assume that tacidely the a”(-,-) (and a’(-,-)) are to be ex-
tended to the original i,V or possibly smooth subspaces Us C U,Vs C V.
The later are necessary for a"(-,-) and a?(-,-).

For the general systematic discussion of discretization methods we have
to choose appropriate combinations, see below, for the original operators and
bilinear forms with their discrete counterparts and projectors. We introduce
Ap, Agp, A, Asp fully analogous to (4.21), (4.22), (4.23), (4.34), by re-
placing —Au 4+ cu by Au or Asu. Again, we use the general notation to
determine the exact and discrete weak and strong solutions ug and u{, resp.,
see Notation 3.1, by

ug € Uy s.t. a(uo,v) = (Auo, V)1 wp = (f,0)rp ¥V v €V and
ul € Ul st al(ul, o) = (APud oYy pn = (f 00 )v cpn ¥ o C VP or
h L= Q’hAh|u: or Ah = Q’hz‘i”u;}. (469)
Here the Aj, and Ay, indicate the general notation for the above extended and

either slightly modified original A, see (4.59), or an approximate evaluation.
Examples are the above quadrature approximations, difference and spectral



70 4. Finite Elements with Variational Crimes

approximations by divided differences and Fourier collocation derivatives.

For the above cases in (4.55) - (4.60) the solutions ug and uf have to
be determined in the following combinations, see (4.2), (4.28), (4.42), (4.3),
(4.45), (4.53). We start with the exact and approximate weak formulation:
Determine the exact and approximate

solution ug € Uy Vv € Vy and ul € U} Yo € VI by:

a(uo,v) = (f,v) w-1(2)xm (2) = (Ao — f,v) -1 (2)xm1(2) and (4.70)

aug,v") = (f,0") =1 (o)) = (AuG = F,0") o1 oy o)
=(Q"(Auf — f),v") -1 (@)x1(), hence A" = QP Al (4.71)

h
a"(ug, 0") = (£, 0" b1y ) = (A0 = £0" Vi1 0y ez ()

= (th(Ahug - f):vh)lll{}:l(n)xH;L(Q)a hence Ah = thAh|u; (472)
a" (ul, o) — (£, = (Aul — £,0""
= (Q""(Apuf — f),vhichm), hence A" = Q’hAh|ugl- (4.73)

Furthermore, we have the corresponding strong combinations, where a, 4, f,a", A, f*, Q'", Q'", <
-, > have to be replaced by their strong counterparts as,...,Q/, (-,-). We
only present the equations, e.g., corresponding to (4.70) and (4.73).

as(u,v) = (f,0)}2() = (Asuo — f,v)12(2) Vv € V4 and

Gk (ult, o) — (fF,0") = (Abul — f,04)" = (QM(Agul — £),0")"

Yo" € VP, hence A" = lehAs|u:. (4.74)
In our general notation we determine ug and ul by
ug € Up : a(ug,v) =< f >ypixy ¥V v €V, so Aug = f and
ud € U : a(uf, ") =< frooh S8, or < Rl Sk (4.75)
Vot € V] or AMub = fh.
It is important to realize that some of the above modified operators, bilinear

and linear forms coincide with or approximate, for smooth enough u € Us,v €
Vs, the original forms. So we have, compare (3.6),

a(u,v) = a(u,v), a”(u,v) = a;(u,v) Yu €eU,v €V,
a"(u,v) = a(u,v), @"(u,v) ~ as(u,v) Yu € Us,v €V,

<f: v)%’xv = <fav>V’><V: (476)
(00 & (F0)yiy ¥ FEV,0EV,.

Recall, that Q'" is either defined w.r.t. the original weak or strong scalar
product or its piecewise definition, see (2.5), (2.17) for the corresponding
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norms. It requires testing with v* € V}* ¢ Vy. This might cause some problems
for Au, Agu € V. Furthermore, if we want to use Q' for FEs based upon
quadrature approximations, the terms A"*u” — f and v", a.s.0. have to be
smooth enough to allow point evaluations. By choosing a strong form of
Au = f and an interpolation basis

V[? = Sspan {’Uz',T € V,?,’ULT(PJ') = (Si,j, VPj €T, VT € Th},

this method can often be re-interpreted as collocation method, see Sections
4.1,4.2.2, 6.5, 6.6.

To present a general form for FE and spectral methods, we introduce a
unifying notation for linear, bilinear forms, linear operators and projectors
and their discrete counterparts.

Notation 4.1 We collect the above unifying notations: We use the uniform
notation from (4.61), (4.68) for the linear and bilinear forms f(-), f"(-)
and a(-,-), a"(-,-) . For the projectors and the exact, approzimate and
extended linear operators Q" : Vi — V', A:Uy, =V}, Ay : {Upy UU} —
WV uVEy, AP Ul — VP we have, for fived ut € U},

A Uy = Vy, (Au,v)yrxy, = a(u,v) Y o€V,
Ay s {U Uy > VUV,
<Ah“haUh>{vguv,’,h}x{vbuvgl} =a"wh,o") Vol e (Vo UV}, and
AP = Q™ Aplyy, with (AMuh, o) = a"(ul, ") V0" € VY, (4.77)

for Aty = thAu see the remarks following (4.26). Whenever we want

to stress quadrature or the strong form of A" or its corresponding strong

or quadrature bilinear counterpart, as(-,-), al(-,-) or @*(-,-), or @*(-,-), see

(4-45), we still use the notations

< Al phSM = gh(uh o) and
h

(Aguh,vh)Lz(Q) = al(u,v") and

b=l

(Aguh,vhjh =al(u, ")V ot e V). (4.78)

Then, see (4.69), we use a unified neutral notation for the exact and approz-
imate (weak or strong) solutions ug and ul. They are defined by the unified
equations:

a(ug,v) = f(v) Y v € Vy or, for short, Aug = f, and
a(ul, o) = R ") Vot € VI or, for short, Ahul = fh. (4.79)

The different forms of explicit notations are collected in (4.70) - (4.75).
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We extend this approach to the nonlinear case. This is more or less straight
forward for the strong versions. For weak formulations, the nonlinear terms
usually are discussed by introducing multi linear forms. This is well estab-
lished for the Navier-Stokes equations, see [64, 16]. We do not want to go
into the details here. Rather, we present our standard nonlinear example,
G : Uy — V'. Again, we have to distinguish the weak and strong formula-
tions, e.g.,

Gy : H*(Q)NHY(N2) = L*(N),

Gs(u) = —-Au+ f(u)=¢9g=01in 2, ulpe =0 (4.80)
or the corresponding weak formulation induced by the usual bilinear and
higher nonlinear forms as

GH&(.Q) —>H*1(!2), <Gu,v >H—1(.Q)><H1(Q)::

a(u,v)+ < f(u) — 9,V >H-1(Q)xH () Yv € H&(Q) (4.81)
where a(u,v) is defined as in (4.67). E.g., for the cases f(u) = u? and f(u) =
u® the < f(u),v >H-1(Q)xH(2) 8ives rise to a tri linear and quadri linear
form < uy X uz,v >H—1(Q)><H1(Q) and < uy X ug X uz,v >H—1(Q)><H1(.Q)7 resp.
The main problem is to show that indeed, e.g., < u1 Xua Xu3,v >g-1(Q)xH1(02)>

is well defined, see [64, 16] for the case of the Navier-Stokes equations.. As in
(4.58) we use the notation for these and more general cases

G : Uy, =V, determine ug € Uy : G(ug) = g€ V'. (4.82)

Similarly to the above piecewise and quadrature variants in (4.67), (4.69) we
have to consider the weak and strong form of G and possible approximations
G}, usually again depending upon h. We formulate the discrete operators as

Gl = QMGW)) or GMu = QMG (uh)) or (4.83)
Gl := Q'M(Gr) (W) or GMut := Q'M(Gh(u")) and
Ghuh .= Q;h(Gs(uh)) or Ghul .= Q;héh(uh)) or (4.84)

Ghul := QG (") or GMul = Qi (G (uh)).
As in (4.69), we formulate the general exact and discrete operators as
G:Uy— V', and G": U} - V',G" := Q"G or
G":= Q"Gy or G" :=Q"G). (4.85)
Finally, we compute, the exact and the discrete solutions ug and u? from
G:U —V'; determine ug € Up s.t. G(ug) =0 < G(ug) L W86)
G":U" - VY, determine ul € UP st. GMul) =0 G(ul) LMV

For a more detailled formulation of the nonlinearity we refer to Taylor for the
analytical background, [62], and Caloz/Rappaz for the finite element version,
[22].
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4.2.2 Spectral Methods

They, too, determine the approximate solutions via the variational approach
in Chapter 3 and Section 4.1. The approximating spaces are defined differ-
ently. Usually, the only type fo variational crime to be considered are quadra-
ture approximations. They are equivalent to collocation methods. Spectral
methods are well presented in the classical and recent books and surveys
[31, 23, 5, 7], for special results see [11, 12, ?]. These methods are particu-
larly appropriate for I'- equi-variant problems with continuous groups I'". This
equi-variance has to be reproduced in the discretization as well. We restrict
the discussion to Hilbert spaces U = H™(2),V = L2(2) = V',2 C R
here w denotes a weight function in a scalar product, (-,)w, and || - || gx ()
the corresponding weighted Sobolev norms, used in the rest of this Section.
Hence, we have, e.g.

(uyv)y == /Qu v w dz and ||u||§{5(9) = Z (D%u, D%u)y.
o<k

This Hilbert space setting is appropriate, since it is the standard setting for
spectral methods and is needed for the most important collocation version.
This requires even G(u) € C({2), hence more than the usual G(u) € V' =
H1(2)or V' =L*(N).

We assume, for Z§ C Z", a

complete orthogonal basis {¢r}, 7 for Y and V
w.r.t. || |l and || - ||y, resp., (4.87)

with real- or complex valued ¢y (z). The finite dimensional approximating
spaces are

UN =uh = span{py : k= (k1,...,k,) e KN} cU, finite KV C #88)

here u"* € U" and the discretization index h is defined via the range of in-
dices k. The most important examples for YV are trigonometric (Fourier)
and Legendre or Chebyshev polynomials. With N = (Ny,...,N,) € N§
this multi-index k € KV satisfies, e.g., |k;| < N; and let N := |[KN|,N :=
min{Ny, ..., N,}. Corresponding operators of truncation, interpolation and
orthogonal projection, and their approximations, onto the L{,fL,V,f‘, are de-
noted by T, 1" P" Q" and P" Q" resp. Every u € U (or V) is, alterna-
tively, approzimated by truncation T"u as

Thu =T"( Z appr) = Z arpr € U,
keZy ke K"

or by (unique) interpolation in distinct points y; € (2, j multi-indices, as
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I" : U — U" is uniquely defined by
(I"u —u)|y, = 0,5 € IN C Z2",|3V| = N = |[K"|.

Now, (-, )y is approximated for trigonometric and Legendre or Chebyshev
polynomials by the iterated trapezoidal (with equidistant points) and the
Gaussian quadrature formulas, resp., defined as

(u,0)0 & (0] = 3 w(y)o)ws, (ullbs @)? = (u,u). (4.89)
jeJV

With p = —1,0,1, 2 for equidistant, Gauss, Gauss-Radau and Gauss-Lobatto
quadrature points y; we have = instead of =~ in (4.89) for p = —1,0,1 and
u,v € U" = UN. For p = 2 this is only valid if one of the u or v € UV~ C
UN = U". The corresponding truncation and interpolation errors satisfy

Thu —u Ly, U and T"u —u L2 UMV u €U, V. (4.90)

As mentioned already, the U", V", o, y; often are chosen according to a
group I', e.g., I' = SO(1) and ¢y (z) = exp(ikz). If we approximate periodic
problems with periodic boundary conditions by the corresponding periodic
functions, see [13], then we have U =U", V] = V. Since (4.90) corresponds
to the L in Subsection 4.2.1 (, we did not use a L,, to indicate a weak L!)
this reads as

up=ur v =vh Th=Qr 1" =Qr (4.91)
These Uy, Vs, Ul', VI and the (u,v)y, (u,v),, are I-invariant. The Th I* :
U — U", coincide with I'-equi-variant and orthogonal projectors w.r.t. (-, )y

ch
and (-,-),,, resp. Hence, e.g.,

~h
(vt ) = (1,0, (yu,y0) = (u,0),, Y u,v € U, V, v €T,
(@Qf = 0"y =0and (QFf —f,0"), =0V v* eV} with
Th = QMI" = Q) st. Qrf—f Ly, V) and Q) f — f LE VP and

s

Qlvf=~Qrf and Q)vf=QrfVy €l (4.92)

The situation changes for non periodic problems and in case of domain
decomposition techniques. Then the boundary conditions defining L{,f,VgL
are realized via collocation in appropriate boundary points. For the stan-
dard spectral and their standard domain decomposition methods enough
boundary points are chosen, s.t., e.g., for Dirichlet boundary conditions,
ul(y)) =0V 35 € IN,y; €92 & ut|pe = 0. So, as mentioned above al-
ready, variational crimes for the standard spectral methods are solely due to
quadrature approximations. For the one-dimensional and higher-dimensional
errors we obtain, see [31, 23, 5, 65, 11, 12, ?] for more detailed errors
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Theorem 4.2.1. Let 0 < { < m and 2 C R, hence n = 1. For a periodic
function uw € HT'(£2) choose 2 = (0,27), w(z) =1 and Fourier polynomials
(K = F). For non-periodic functions choose 2 = (—1,1), w(z) = 1/V/1 — 22
and w(x) = 1 for Chebyshev and Legendre polynomials (K = C and L),
respectively. Furthermore, let m > 1x(€) with

tr(l) =40, 1c(€) =24, o, (£) :=20+n/2. (4.93)
Then the errors converge for N — oo as
1T —ullme )y < | Tkw—ullge ey < CONT™FEE | u || gy (of4.94)

The quadrature errors are estimated by || Iftu —u || 12 (o), however see (4.89)
and below. For functions defined on 2 C R*,n > 1, the N in (4.94) has to
be replaced by N. If different approximations, e.g., a combination of Fourier
and Legendre, are used for different variables, the minimal 1* () has to be
chosen.

For the study of variational crimes we need, [23], for uh € Uh 1 < p <

g < oo and r > 1 the following inverse estimates

[u*llg () < ONMEOHEG=D ub ooy Vu € UM,k = F,C, L an(it.95)

urp(r) =r,uc(r) =ve(r) =2r and vp = vo = l,v, =2

To avoid too many technicalities for the following spectral collocation meth-
ods, see Subsecion 4.2.2, we assume (4.112) as

G(u) = Au+ AR(u) = Au + AR, (u, Vu,/ u) (4.96)
20

=Au+)\(u2+Vu(u+/ u) +9).
20

with G(ug) = 0, A = Gy(uo) a bounded linear operator, often Au = —Au,
and R a nonlinear operator. This (4.96) already shows the handling of the
essential difficulties. For the general case, see [13]. With the above projectors
Q'Sh, Q'Sh the different types of spectral methods can be formulated as, see
(4.90),

determine u? € U} such that Q"G(ul) =0 or G(ul) L, VI, (4.97)
determine ul € U} such that QFG(ul) =0 or G(u") L VI, (4.98)

Sometimes G(u") is replaced by an approximate operator G"(u"), see [6],
Klaus Klaus im book wieder aendern Booklet ?? Subsubsecion ?7.
The difference to FEMs is due to the fact, that mostly the strong formulations
with QF, Q" are used as in (4.97), (4.98), w.r.t. to L2(2) = V = V'. The
weak form with, e.g., V' = H~1({2) and the Q'", Q" play a minor role. This
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is mainly caused by the dominance of collocation spectral methods. To apply
it we need continuous G(u) or G(u"). For our above example (4.96) we have
to evaluate

GM(uh)(y;) := (A"uM)(y;) + AR (uP)(y;), AMu":=T" (Aut) (4.99)
with j € JV and usually T"(Au") = Au®, and
RMuP) () := M(@")? () + (Vu) () (W (y;) + Y w"(@)ws) + 9(y5))-
ieJV
In spectral methods usually the (A(u"))(y;), (Vu")(y;) are not evaluated
directly, but via some linear approximation operators, e.g., the Fourier collo-

cation derivative, see [23]. We denote these kinds of linear operators (again)
as

Ahyh o~ (A, Lyl ~ Vul st
(AruM)(y;) = (AuP)(y;),  (LtuM)(y;) = (Vu")(y;)  (4.100)
= [ ut e 3 gy ul (g = Ol
We introduce the restriction operator
o O(Q) = BY, (M) () = ulyy), jeIV. (4100
The G"(u") in (4.99) can now be re-interpreted as
"GP (uh) = ph(AMul) + Ap" R (u™). (4.102)

For spectral methods in the Hilbert space L2 () the p" can, for smooth
situations, equivalently be defined by the Q/* in (4.92). So we can re-write
(4.102) as

~ 1

QG (uh) = QF(AMuP) + AQ S RM(uh),
and determine u! s.t. Q*G"(ul) = 0. (4.103)
So we are back at (4.98). We distinguish two cases: Either the restriction
operator p” is applied to the exactly evaluated R(u") to obtain p"R(u") =
p"RP(uh). Or, e.g., Fourier collocation differentiation and de-aliasing tech-
niques are employed to introduce an appropriate R.. Then, we observe that
PP RM(uh) := R.(phul, p"(Lyuh), Lhuh) (4.104)
= p"Re(u", Vul, £"u") + O(|T" R(u") — R(u")|| 12, ()
= p"R(u") + O(|II"R(u") = R(u")||L3,(2));
and corresponding relations for the partials of R, R",

All these operators p*, A® L and the functional ¢* are bounded and linear,
w.r.t. appropriate norms. So the corresponding conditions for the derivatives
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are automatically satisfied. So, we have a situation very similar to FEMs. The
main difference is the other form of approximation subspaces and the con-
centration on the strong formulations. Instead of (4.83) the following strong

version defines uf} :

Ghul == QMG (ul)) =0or Ghul := QIG(ul)) =0 or
Ghul .= QMG (ul) =0or Grul == QM(Gs(ul)) =0. (4.105)

This corresponds either to the (4.97), (4.98) or to the collocation version
(4.99), however generalized to allow the above approximations.

4.3 General Concepts for Convergence of Finite
Elements

In Sections 3.1, 4.1, 4.2, we have collected many examples of FE and spectral
methods with and without variational crimes. This shows the following: To
analyze these methods, in particular with variational crimes, we have to relate
the approximating subspaces U", V" with linear operators, projectors, linear
and bilinear forms and appropriate generalizations. To simultaneously discuss
all the above cases, we choose the neutral notations of &,V and U"*, V" for the
Banach spaces and their discrete approximations, resp. The Uy C U, V, CV
and U} c U™, V] C V" are closed subspaces defined by appropriate boundary
conditions, usually with V; =V'. Only sometimes we require U C Uy, VI C
Vo ot C U, VP C V. Uy and V, and U and V]! are needed to guarantee
the unique solvability of the problem Aug = f and its discrete counterpart
Ahyl = fh below. We use norms and bilinear forms either with or without
indices, e.g. ||u]| = ||u|lu for u € U or u € U,. We give several definitions:

Definition 4.3.1. Conforming and non conforming (Petrov-Galerkin) ap-
proximating spaces: Let U,V be Banach spaces, Uy C U, Vi C V closed
subspaces and U™, V" be finite-dimensional spaces, assigned to every h € H
with 2 accumulation point 0. We call U approximating spaces for U if we

dist(u,U") := 2n£h llu—u||l, -0 forh—0VY wel, (4.106)
ulh €
sometimes only required for u € Uy. In the sequel we assume admissible
approximating spaces L{,f‘ cuh, V{” C V" for U, and V, defined by

dim U} = dim V¥, dist (u,U}') — 0, dist (v,V}') = 0 for
h—0 Yuely, YveV, (4.107)

2 we do not want to over-formalize the notation and have chosen h € H
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The terms conforming and Galerkin and Petrov-Galerkin approximating
spaces are used if U} C Uy, VI CVy and U} = V] and U} # V], resp.

We denote a combination U} ¢ Uy, VI ¢ Vy or U} ¢ U, V] ¢ V as non con-
forming (Petrov-Galerkin) approximating spaces. Sometimes, all these cases
are denoted as generalized Petrov-Galerkin approximating spaces.

If, in addition to (4.106) for Uy, the V" satisfy (4.106) ¥ v € V; and
Y v € V", the bi-dual space of V, then U", V" is called a bi-dual pair of
non conforming (Petrov-Galerkin) approximating spaces. The bi-duality con-
dition is usually satisfied, in particular, it is correct for our FE and spectral
approximations.

For the following considerations we need operators P" € L(U,U}!), and
Q" e LOV', V') sometimes even Q" € L(V,V!). The Q" is needed for
the dual problem and is then defined analogously to QI”. We may choose
the P" relatively arbitrarily, however, the Q'h has to be chosen to fit to the
variational methods, see (4.109), Remark 4.3.2. So let

Ph e cu,ul), eg., Phu:=1"u Yuel, (4.108)

with the interpolation operator for finite element or spectral methods or some
kind of quasi-interpolation or best approximation operator.

We have seen, in (4.60), that for the non conforming Petrov-Galerkin
spaces, the original < f,v" >H-1(2)xH(2) May not be defined, and have to

be extended as < f,v" >’Ili;1(9)xH}l(.Q):< f,v" >" in the generalized form.

Or we even have used a < f hyh P They still coincide with or approximate
the original pairings on V' x V,. We use for all cases the general notations
see (4.61), < fh v >y, and < fA 0" >* . On this basis and including all
the cases in (4.65), we are able to define interpolation and the operators Qh
as

QrecvV V) st QMf=flyp & <QMf—fo">"=0o0r
Qrf=fyp & <QMf—fu"3" =0 VoheV)4.109)

According to (4.65) we use the same notation, Q" for all cases, including Q.

Our (stationary) nonlinear problems can be formulated again in a strong
or a weak form. We study the operator G : H}(2) — H1({2) and determine
ug € HE () s.t. G(ug) = 0. Similarly to Section 4.1,

G(uo) = 0 is tested with V, w.rt. <-,- >g-1(0)xH1(2) - Then
G(ug) =0 & < G(ug),v >H—1(Q)><H1(Q)=0v v E W
=4 G(’LL()) 1 V. (4110)
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If we want to emphasize the strong form, we use the following notations:
L indicates orthogonality w.r.t. (-,+)r2(0) and G4 (u) the strong form corre-
sponding to the weak form G(u), such that G4(u) = 0 can be appropriately
tested by (-,-)2(2) on Vp. Then ( 4.110) is modified into:

Gs(ug) =0 (GS(UO),’U)Lz(Q) =0V ve
& Gs(ug) Ls Ve (4.111)

Most of the time we consider for FEMs the weak form (4.110). Mainly in con-
nection with collocation we consider the strong form (4.111) as well. Again we
use the neutral denotation for both of (4.110) and (4.111) (,with L indicating
orthogonality w.r.t.(-,-}yrxy,) and determine ug € Uy, s.t.

G(uy) =0 < Gug),v >yixy=0Yv €V & Gug) L Vs. (4.112)

To reduce the technical difficulties we confine the presentation for the begin-
ning to the case of a bounded linear operator, e.g., A := G, (u1), in either
weak or strong form. The evaluation and consistent differentiability of the
nonlinear operators will be discussed separately, see Section §4.4. For (4.112)
and A € L(U,V'), we determine

up EUp : Aug = f, feV & alug,v) =< f,v >prxy V v € Vp(4.113)

with a(u,v) =< Au,v >yprxp YV v €V, Yu € Y fixed. Again we obtain, for
Dirichlet boundary conditions and for the two choices Uy, V), = H}(£2), H(12)
and = H?(2) N H}(2),L?(12) the weak and strong bilinear forms a(-,-) and
as(-,-), resp., similarly for natural boundary conditions.

For the different linear and bilinear forms, projectors and operators we
use Notation 4.1. This includes the functionals f, f* in (4.60), (4.61), or the
corresponding pairings < -, - >yryyn, < >"_ the bilinear forms a”(-, -) e.g.
as(-,-),at(-,-),a"(-,-), see (4.68), and the projectors and operators Q'", e.g.
QM Qr, Q" Q) in (4.65), the Ay, e.g. A, A,, Ay in (4.55), (4.58), (4.59).

We want to repeat the discrete equations. The so-called (exact or con-
forming) Petrov-Galerkin methods for (4.113) determine, with the original

A, a(-,-), the ul € U} C U, s.t., see Definition 4.3.3,
Arulf — QM = QM (Aul) - QMf =0 & (4.114)
< QM(Auf — £),0" >vrn= aluf,v")— < f,0" >y 0n=0V " € VP

The so-called non conforming Petrov-Galerkin methods for (4.113) allow vari-
ational crimes, e.g., U} ¢ U, or U} ¢ U, and similarly for V] . With the
above general notations, see (4.65), (4.66), they determine, with extended
Ap, ah(-,-), the ub € Ul s.t.

Arul — QM = QM (Apul) — QM f =0 with A" = thAh|M;L &(4.115)

< Alyb — Q"M Sh= al(ul, o) — < f,oh S =0, v P e VI
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Finally, we combine Au, f € V NC(2) with the Q'", e.g., defined by
quadrature, to obtain

~1 ~1

Atuf — QM f = QM(Apuf) — Q" f =0 with A" = QM Ayl €(4.116)
< Ayl — Q'hf st = at(ul, o) - < fohsh = ov o e Vh.

If we choose a special interpolation basis v; 7 € VI, vi(y;) = &;; Vi, j VT €
T", for the different quadrature points y;, this method can often be re-
interpreted as collocation method, see Sections 4.1, (4.47) and below.

Remark 4.3.2. The P" Q" should be chosen s.t. their errors have similar
orders of magnitude as those of the consistency errors below. Otherwise the
results are no longer optimal.

The main examples for this theory are finite element- and spectral methods.
Difference methods are treated in this context in [16].

Definition 4.3.3. Generalized Petrov- Galerkin (P-G) methods: Let U, V!
be conforming and generalized P-G admissible approximating spaces, see Def-
inition 4.8.1 and A, Ap, a(-,-), < -,- > Q" f'(-), be the exact and
extended or approximate operators, bilinear forms, pairings, projectors and
functionals, see (4.55), (4.58), (4.68), (4.61), (4.65), (4.64): Then we call
(4-114), (4.115) and their approzimate variants, (4.116), the induced dis-
cretization methods, in particular.

(a) if U" =V" C Uy, we call (4.114) a Galerkin method,

(b) for U™ # V" we call (4.114) and (4.115) a Petrov-Galerkin (P-G)
method

(c) for UF C Uy, V] C Vy we call (4.114) a conforming FE or spectral for
short a P- G method _

(d) for an approzimate Ah ~ AP and/or Q' fh()
we call (4.115) a generalized Petrov-Galerkin (P-G) method,

(e) if UP ¢ Uy or U} ¢ U, similarly for VI, we call (4.115) a Petrov-
Galerkin (P-G) method, with variational crimes.

(f) the last two cases (d), (e) we call non conforming FE or spectral, for
short Petrov-Galerkin (P-G) methods

(9) if we use the strong versions Ay, Ay, AP, Q1 Q} we call these pro-
cedures strong (conforming or non conforming) methods e.g. a strong
Galerkin method

(h) for short we call the cases (d) - (g) generalized P-G- methods.

For FE and spectral methods each of the above choices A" = QIhA|ubh, Al =
Q’hAh|u:, Ah = Q'hAh|uzl implicitly defines a linear operator #". This &" :

L(Uy,V}) = LU, V) indicates a general procedure, defining the discrete
operator A" for the original A, according to the chosen method. Again, we use
the general notation ®". It yields the “discretization” A" = &"(A). A similar
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approach is possible, as we have seen in Section 4.2, for nonlinear operators
as well. So we have A" = ®"(A) or G* = &"(G) for linear and nonlinear
operators A and G, resp. It is important that $" acts on the different u
dependent terms in A or G by applying linear operators, e.g. the Fourier
collocation derivative, see [23, 11, 13, 6, 7, 65] for details. This operator

Uy = V)= (U — V,fl) for nonlinear operators and
its restriction " : L(Uy, Vi) — LUL, VE') with &"(A) = A"
is indeed linear, since #"(A + C) = &"(A) + $"(0). (4.117)

This last condition excludes , e.g., Runge-Kutta methods. These methods are
not important in our context.

So, we have the following diagram, with the general notation A", Q' oh,
e.g., Ah, Q" o" or A Q) B"

Uo Ub A,_A;1 V{; exactly tested by Vb cV
PhHEh qshl Q'hl (4.118)
u(? A_h> Vbl (approzim((ztﬂl) tested by V[?

Here P", E", th are uniformly bounded; w.r.t. the appropriate norms. E" is
the identical or a more general embedding, sometimes even with an additional
embedding E" : V* — V. We will come back to the necessary comparison of
A and A" in Chapter 6.

We have to check, how well the discrete solution, ul?, satisfies the original
equation. We will end up with two different, however, closely related concepts
the variational and the classical consistency errors.

Similarly to the classical definitions, we start defining a measure of
how strongly a nonconforming Petrov-Galerkin method (or with variational
crimes) violates the conformity conditions. For U}* C Uy, VI C Vy satisfied
or violated, we have defined the exact and discrete solutions uy and u? by

ug € Up : a(ug,v)— < f,0 >yixy, =0V v €V and, e.g., (4.119)
ub e Ul : a(uh,v™)— < f,o" >@,va = 0V P eV} resp.

Hence, the second equation does and does not represent a subset of conditions
for conforming and non conforming Petrov-Galerkin methods methods, resp.
Subtraction yields

a(ug —ul,v") = 0V o" € Y} (for conforming methods). (4.120)

If we replace a(ug — ull,v") by the general a”(ug — ul,v"), and consider

non-conforming Petrov-Galerkin methods this term is nontrivial, see (4.13),
(4.29). Then
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a"(ug — ulf,v") or  sup {la(ug — ull, o)/ [1} (4.121)
0£vheVh

is denoted as wvariational consistency error in the FE community. However,
it slightly differs from the classical notation, e.g. [57]. With respect to the
induced operator A" and if u is smooth enough to define Ajug , we transform
the relation (4.121) into

Q" Apug — AMul = AM(PMug — ul) + Q M (Apuo — AP uy).
If additionally ug is smooth enough the
Q™" An(uo — PPug)|ly = O(|luo — Ptugll) — 0.

This can be generalized to arbitrary smooth enough w , if we introduce f, :=
Au and u” is the discrete solution of A"u"* = Q" f,. In general notation and
with Apu = Au, this reads as

Q" Apu — Alyh = AP (Phu —uh) + thAh(u — Phy)
= A"Phy — QM f, + Q" Ap(u — Phu)
= A"Phy— QM Apu + QP Apu — APPMu (4.122)
= A"P"u— Q" Au+ O(||u — P"ully).

For the following definition, we use the notation as in (4.26), (4.34), (4.77),

~1

Ahy = Q'hAhu, or Ay := Q" Apu Yu € Uy smooth enough. (4.123)

We start with the linear case here and motivate and study the nonlinear case
in Section 4.4.

Definition 4.3.4. Consistency errors: Under the conditions of Definition
4.8.3 we choose a"(-,-) as in (4.67), (4.68) and Ahuh = Q "Au. Then

ahu—uh o) or sup {la(—ut oM/} (4124)
0£vheVh

is called (variational) consistency error in u. ( For conforming and non con-
forming methods it is trivial and nontrivial, resp.) This notation in (4.124)
is used similarly for the isoparametric variants. Define a discrete operator
A" by applying a Petrov-Galerkin method to a linear operator A. Then

| A" PPy — Q" Apul|y (4.125)

is called (classical) consistency error in u. A method is called variationally
and classically consistent for A in u, if

sup {la"(uo — ug,v™)|/|[v"||I} = 0 and
0#£vheVh

|A" PPy — Q" Apullyr — 0 for h— 0, (4.126)
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resp. If even

A" Py — Q™ Apullyr or  sup {|a"(P"u—u,v")|/|lo"(|} = O(RP),
0£vheVh

we call it consistent of order p. These O(hP) are usually estimated by
Ch”||u||qu(Q) with appropriate p,k,q.

Remark 4.3.5. The variational consistency error usually is only considered
and estimated for the exact solution, ug, or if necessary for an approximant
P"uyg, see Chapter 6 for estimates. A generalization to arbitrary u is possible,
see (4.122). The classical consistency errors are often studied for general u.
There is the simple relation between the two terms in (4.122). Hence, through
the rest of the Booklet we assume, and, in fact, do have

lle = PPl < 1T = PPl llull = 0 VA =0, Yu € Uy (4.127)

Both consistency errors even have the same size, if both dominate the inter-
polation error |[ug — P uo||u-

We need the important concept of stability for linear and nonlinear operators
in Section 4.4. We start her with the linear stability and extend it to the
nonlinear case in Chapter 7.

Definition 4.3.6. Stability: Let U", V* be conforming or general admis-
sible approximating spaces, see Definitions 4.8.1,4.3.8. Assume a bounded
linear operator B" € LU, V) is assigned to every h € H. The sequence
(B"Mnem, or for short, only B", is called stable, if there are positive con-
stants ho, C, independent of h, such that for h < ho the (B")~* € LV, U})
ezists and that ||(B") ™! [[yn —yn < C.

4.4 Stability and Consistency yield Convergence

We want to unfold this well-known fact for FE and spectral methods with
variational crimes. We do that 2 in four steps:

We start with a direct comparison between A and A* or G and G"* as
in [57] in this Section. We show that ”Stability and Consistency yield Con-
vergence”. Then we have to prove stability and consistency in the following
Chapters. We present in Chapter 5 generalized Strang Lemmas for the fa-
miliar (weak) bilinear form approach for FEMs. In Chapter 6 we estimate
the errors necessary for the generalized Strang Lemmas in Chapter 5 and
prove stability for coercive bilinear forms. Finally, in Chapter 7 we prove the
general stability and convergence.

3 We use throughout the notations, see 4.1, and Definitions 4.3.1,4.3.3,4.3.4, 4.3.6
in Sections 4.2 and 4.3.
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For the a”(-,-), f*, A" and for Q'", P", in the above general notation, we
want to use the results in Sections 4.2 and 4.3 as motivation for the general
nonlinear case. For consistency, the Gu and its discrete counterpart have to
be compared, hence,

G"P"u — Q"Ghu = (8"G)(P"u) — Q "Ghu, (4.128)

in particular, for the solutions ug,u? of G(up) = 0 and (®"G)(ul) = 0. For
the linear case the results in Lemmas 5.1.2 - 5.1.4 will allow estimates of the
form

h h ,,h
a’\ug — Up, vV
b — wollly < C(dist (uo,Uft) + sup 1% (%0~ Uo: )]

). (4.129)
0£vhEV] oI5

for the extended a”(up — ul,v") defined Vo € V. Usually, ug & UL, so
a”(ug, v") might not be defined and stability is not applicable and available
for a”(ug,v"), but only for
a(5,) :UP x VS R eg. a(Phug, o).
So, we better study,
a"(P"ug,v") — f(v") = a"(PMug — ul,v")
= a"(up — ub,v") + a"(Phug — ug,v™) ¥ o" € VI,
here a"(ug,v") is only defined if ug is smooth enough. For the induced oper-
ator A" this reads, with well defined Apug = Auog, see (4.122), as
APPryy — QM Aug = APPhug — P = AM(PMug — ul)

= Q" Apug — AMul + AP Py — QP Apug (4.130)

= Q" Aug — AMul + QM AL (PMug — o).
The first term APPhyy — QP Aug is called local discretization error in, e.g.,
[57], see (4.126), for Gug = Aug — f = 0. The Q "Apug — A"ul corresponds
to the above variational consistency error in FFEs, see Definition 4.3.4, and
see Chapter 6 for estimates. The last term, Q * Ap, (P"u¢ —uo), is, for smooth
uo and with || P*ug — uol|}y = 0 automatically small. For a stable A" applied
to AR (PMug — ult) we obtain

1P uo — ult ||l < C||A" Phug — Q" Aug || or
< C (IP"uo —uolly + 1Q™ Auo — A™ug[1}),

implying (4.129) in a modified form.
Now, we use these insights to motivate the definitions for the general

nonlinear case: We started with a weak or strong operator, e.g., G : Hy (£2)N
H;7'(02) or G : H2(2) N H§(2) — L*(£2), in the general notation
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G :Uy — Vy, Uy, Vy Banach spaces, solve G(ug) = 0.  (4.131)

To obtain good convergence or to apply quadrature approximations, we need
a smooth solution ug € H™1(2) N Hy({2) or even, e.g.,

G : Uy, = H™(Q) N HYQ) =V}, = H" 1 (2),m > 0. (4.132)

Obviously, modifications for differential equations of higher order are neces-
sary. We choose the interpolation or truncation operators P* = I" T" or
projectors Q " :

Ph: Uy — L{,f‘, P"; and Q'h V= V,?’ as linear bounded operator§t.133)

Sometimes we even study extensions P* : i{ — U" and Q" : V' — V', They
have, for smooth u € Uy, f € V', the usual approximation properties

1Py — |, — 0 or Q™" f— flI% =0 for u € Uy, f €V} and
|P"u — ul|f = O(hP) or Q™" f - flI% = O(hP) for u € Ups f € V'(4134)
for h — 0. This implies
lim [|P"ullfy = [ully and Tim |Q™ f||% = ||£[lv
h—0 h—0

for fixed u € U, fe V' (4.135)

Furthermore, see Section 4.3, (4.117), the operator ¢" is applicable to 4, A— f
or G in (4.112), and

O (A) = AM = Q" Aplyp or PM(G) = G = Q" Glyp.  (4.136)
Specific examples are

Ar = thAh|u,f or Q’hz‘ih|ugl or thAh|u;l or thl‘ih|u;‘
and similarly

Gh = Q’hGh|u;r or théh|u;w or Q’hGh|z,{;» or théh|u:-

Here A, G and Q'" have been obtained, see Section 4.1, e.g., by applying
linear approximation operators to the u—dependent terms in A, G, e.g.,
Fourier collocation derivatives for u'. Then we obtain, as special case of [57,
58, 66, 68]

Definition 4.4.1. Let the sequence of spaces {UP,Vi}hen and of bounded
linear operators {P", Q" ®" Yhepm satisfy (4.135) and G € D(®"). Then we
call M := {UP, VI, P*, Q" "} e a discretization method applicable to
G in (4.131), see (4.112). This defines the discretion, "G = G* : U} — VI
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and the* discrete equation, G (ul) = 0. Let furthermore u € U (or Uy) satisfy
u € D(Gr) N D(("G)P*) s.t.

(8" G) P u — Q"Ghulll — 0 and O(hP) for h — 0,h € H. (4.137)

Then the discretization method is called classically consistent with G at
u, and of order p, resp. Evaluated for the exact solution ug of G(ug) = 0,
G"(Phug) = (®"G)(P"ug),h € H is called local discretization error of
(8"G) = G" or of the discretization method 9. Sometimes one might have
to choose a subset H C H and admit only h € H.

The choice of P*, Q" for the given UJ*, V! and problem (4.112) is certainly
not unique, e.g., the above interpolation or truncation operators. However
the combination U, V', P*,Q"", " should be chosen appropriately to yield
consistency or even (4.137) with the highest possible p.

We have already introduced in Definition 4.3.6 the stability for linear
operators B". We generalize it in

Definition 4.4.2. Let G* :— Vgl, G" € D(G") C U}, be defined by the
discretization method M and let u" € D(G") CUJ' Vh € H. Furthermore, let
r,S € Ry be fized constants, s.t., uniformly in h € H:

ul € B.(ul) := {o" et : " =P}, < r}i=1,2,
= llut —u3lly < SIG" (uy) — G" (uz)Il}y- (4.138)

Then G" is called stable in u” and S and r are called stability bound and
stability threshold, resp.

We see immediately, that for G*u" = APuP + f* with linear A", the above
definitions for consistency and stability are equivalent to the Definition 4.3.4
and 4.3.6. This result can even be extended in Theorem 7.1.3 .

We will discuss in Theorem 7.1.3 the conditions, which guarantee stability.
E.g., it allows to reduce stability for the nonlinear problem to that of the
linear problem. In Stetter [57] the first inequality in (4.138) is replaced by
the weaker assumption.

1G" (uf) = GM(uM)[I} < R, i =1,2. (4.139)

Since for nonlinear G (and hence G") this (4.139) may be satisfied for large
luh — ul||}, we have chosen the stronger assumption in (4.138). In fact we
have, see [57], Corollary 1.2.2, the following

Corollary 4.4.3. Let in the discretization Gh : U} — VI the G" be contin-
uous in B,.(u") and satisfy (4.138). Then these {ul}ncn satisfy (4.139) with
R=r/S.

* although usually D(G4) C Uy, D(G1) # Uy, we keep this simplifying notation.



4.4 Stability and Consistency yield Convergence 87

Consistency plus stability imply convergence. This is the essence of the fol-
lowing theorem, see Stetter [57]:

Theorem 4.4.4. Let the original problem (4.112) have the exact solution
ug and let G* - Ul — VI be its discretization and satisfy the following
conditions

1. G" = $"(G) : U} — VI is defined and continuous in B.(Phug) with
r > 0 independent of h,

2. G" is (classically) consistent with G and consistent of order p in Phug,

3. G" is stable for Phuy.

Then the discrete problem G"(u") = 0 possesses the unique solution ul € U
for all sufficiently small h € H and ul converges and converges of order p to
ug, respectively.

This Theorem shows that we have to prove consistency and stability for
G". The proof of (classical) consistency for the conforming FEMs is straight
forward, see (4.120):

Theorem 4.4.5. Let G € C*(Uy), and u, Phu € D(G). Then for the con-
forming FEMs the variational and classical consistency error vanishes and is
estimated by

(#"G)(P"u) — Q" (Gu) = O(||P"u — ullu) resp.
Proof : We have for G :U, — V] and U} C Uy, VI CV
("Gl := Ghul = QM (Guh). (4.140)

Then,with G € C'(Uy), and u, P*u € D(G), we find by the Mean Value
Theorem

(8"@)(P"u) — Q"™(Gu) = Q"™(G(P"u) - G(u))

1
— Q" / G'(u+ t(Phu — u))dt(P'u — u) = O(|P'u —ully). ™
0

This argument breaks down for variational crimes. In fact, the violated con-
tinuity and boundary conditions imply complicated errors.

Now, we come back to the general structure of the FE and spectral meth-
ods. By (4.136) the #"A = A" or #"G = G" are obtained by applying
bounded linear operators, e.g., Q ", Ph I" Th to ApuP or Gpu”. Otherwise
approximations as, e.g., the Fourier collocation derivatives and de-aliasing
operators for spectral methods may be applied to the argument u or some of
its derivatives, constituting A or G. So we employ and need inner and outer
bounded linear operators, P" and Q’h, to obtain

G"(P") — Q"‘G;L w)|lyr = O(hP) ||ully, , for smooth u € Uy 5.(4.141)
b,s )
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These claims for spectral methods have been studied in detail in [11, 12,
13, 6, 7, 15]. The linearity of this #" in (4.117) obviously allows to exchange
differentiation with these operators. As indicated above already, this property
contrasts to and excludes methods of the Runge-Kutta type, see above. Here
implicit and repeated function evaluations destroy the linearity.

The proof for the following Theorem for FE and spectral methods is very
similar to that in [13]: For non conforming FEMs we have to come back to
this problem at the end of Chapter 6.

Theorem 4.4.6. Let the nonlinear operator G satisfy G : Uy — V), G €
C™(D(G)), G(ug) =0, |lug — ully be small, let U}, V} &" define conforming
Petrov-Galerkin methods and let G" be evaluated corresponding to (4.136),
employing inner and outer bounded linear operators. Then the operator G"
is consistent and r-times consistently differentiable with G, that is, for j =
1,...,m

|G" (P u) — Q" Gulll = O(| I"u — ull}),
1(G™ D (Phu)Phuy - ... Phu; — QGO (wyuy - ... - uy||l, = (4.142)

= Oy = uallgy - - - 15 = wsllg) (1 + (1T = ullg)

for u,uy ... uj € U with |lu — uol|}, sufficiently small. Analogous results for
ph, Q'h—combinations are valid as well.

Proof: The higher derivatives with fixed, e.g., u,u1...,u;_1 can be inter-
preted as corresponding bilinear forms. All the operators defining $" are
bounded and linear and U}, V}* define conforming Petrov-Galerkin method.
Hence, linear A satisfy (4.141) and the A" are consistent. This implies the

consistency of the (Gh)(j) (Phu)Phuyy - ... - P"u; as well. That in fact they
are related by (4.142) follows as in [12, 13]. ]
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This Chapter presents the influence of violated boundary conditions, conti-
nuity and approximate evaluation generalizing the well known Cea Lemma.
In contrast to Chapters 4 and 7 we have to distinguish here and in Chapter
6 the different bilinear forms.

Following Theorem 4.4.4 we have to show stability and consistency for
a general class of operators and generalized Petrov-Galerkin methods. As
indicated above, we do that in four steps. In this Chapter we discuss the
variational consistency errors for weak and strong formulations of the prob-
lem.

5.1 Generalized Strang Lemmas

We consider bilinear forms a”(-,-), satisfying a discrete inf- sup-condition.
This condition has been verified in Theorem 3.3.3 for coercive bilinear weak
forms. With the estimates for the |a"(ug — ul,v")|/|[v"||% and |@"(uo —
ul,v™)|/||v"||% in Chapter 6, we will be able to to prove these inf-sup—
conditions for general elliptic bilinear forms in Chapter 7. This implies the
case of boundedly invertible A" and hence the general stability for linear
and nonlinear operators, see Chapter 7. So, the following generalized Strang-
Lemmas play the role of a certain guideline for the further studies. We esti-
mate
h h ok
Juf — uolly < Ceist (ug, ) + sup 100l
oporevy ORI

a(up — ult,v") is defined Vof € V. (5.1)

), if

The last condition is necessary for the case of @"(ug — uf,v") which requires

smooth enough uyg.
The missing estimates for the variational discretization error supg.,» cyn

la® (uo —ult, v™)|/||v"||% for the different cases are given in this Chapter 6. We
formulate the Lemmas for the different cases of variational crimes introduced
above. Again, we use the general notations for a, A", f* Q" P" as intro-
duced in (4.68), (4.69), (4.61), (4.66), (4.108), see Notation 4.1. We impose
the following conditions.
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Condition 5.1 Let a(-,-) and f(-) be continuous and admit a solution
uo € Up for a(ug,v) = f(v) Y v € Vy; (5.2)

choose the Uy, Vy and the corresponding boundary conditions Bu, Bijv as in
(3.19), (8.20). Let a(-,-) and f(-) or a"(-,-) and f"(-), the bilinear and
linear forms in (4.68), be uniformly continuous on U} x VI and VI . Let

a(u,v) = a(u,v), f(v) = f(v) Yu €Uy orv € V. (5.3)

Let a"(-,-) satisfy a uniform inf-sup— condition, see Theorem 2.1.7 and Chap-
ter 6, with
" >e>0 on Ul x VI, (5.4)

This implies a unique discrete solution
ul e Ul for a(ul, ") = f") VP € V] (5.5)
and it implies the stability of A".

Remark 5.1.1. According to this Condition and the general notations, the
above bilinear forms, operators and norms can be used in the weak and strong
forms. This is one reason for calling the results in this Chapter the generalized
Strang Lemmas. This is particularly important for the last Lemma 5.1.4. Tts
strong version includes the results necessary for collocation methods. Mind
that for the weak and strong forms we have the following combination of
bilinear forms, Banach spaces and norms. We explicitly only formulate the
case of Dirichlet boundary conditions.

a(,): Uy x Vo) = (Hy(2) x Hy(2)) - R,
lullet, = llullv, = [lull g2 (o)for the weak, and (5.6)
as(-,) : Uy xVp) = (H*(Q) UHL(N) x L?(N)) = R,
lullet, = llullm2(2), [lv]lv, = |lvllz2(2)for the strong form.
The following Lemmas generalize the Cea Lemma 3.3.1, see [18, 17].

Lemma 5.1.2. Violated boundary conditions: Let U} ¢ Uy, VI ¢ Vs, how-
ever U CU, VI CV, henceu € Ul ,v" € V] violate the boundary conditions
Bu" = 0 and Byv" = 0, see (3.22), but are continuous. Let a(-,-) satisfy
(5.2), (5.8), (5.4), and ug € Uy and ul € U} be an exact and the approzimate
solution, defined by

a(ug,v) = f(v) Yv €V, a(ul,v") = f(u") Vol € VI (5.7

Then, with C' independent of h,

h ok
a(ug — ul,v
lluo —uglly < C | inf [lug —u[l + sup lauo = s, 7)) e ) - (5.8)
uh el 0#vheVh llv™ly
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As a consequence of (5.2), (5.5), the second term on the right-hand side of
(5.8) would be zero if U C Uy, VI C V. Therefore, it measures the effect of
Ut ¢ Uy, V¢ V.

Proof. For any u" € U},

llug — ublls < Iluo —uP s + [lu” — ullly (triangle inequality)

1 b,k
<o -+ L sup TSIy (5 1)
€ yheVi\{0} [lo"(]y
1 a(ul — ug, v") + a(ug — ult,v"
= o= w4 L sup 1000 =0 ) el — w0
€ yhevi\{0} l|vo" |y
1 a(u? — ug, v"
< flug — g+ 4 sup A w0Vl (59)
€ yheVi\{0} [l
1 —ah h
+—- sup M (triangle inequality)
€ yheVh\ {0} [lv"{]v
h Cn sk sk
< luo — u®|lur + :IIu — ug|ly (continuity in U x V}')
1 a(ug — ul, vh
+- sup |(0h—0)| (510)
€ yheVh\ {0} [l [l
C 1 a(ug — ul, vP
= (1+—> ||U(]—’U/h||u+— sup |(0h—0)| ]
€ vheVi\{0} [lo"]]y
Note that, by continuity,
|a(uo = ug, v")| h
190 = %0, Y )1 < Ollug — ul||y 5.11
oy — (.11)
so that
1 a(ug — ul, vP
luo — ullly > = c . sup |(0h—0)| (5.12)
vhevi\{o} [lv" Iy
Combining (5.12) and (
1 |a(u uh,vh
c sup (uo — - 0 )|, 1nf ||u0 — ||y
vheVi\{0} ™Iy rey
< luo — uglu
(1 —) inf |lug — u”||y (5.13)
uheup
_wh ok
+ sup |a(u0 Ug,V )|

€ yhevi\{0} vk lv
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Inequality ( 5.13) indicates that the term inf ngyn [luo — u® ||, together with
SUPyh eyp fo} |a(uo — ul,v")|/||[v"||y truly reflect the size of the discretization

error ||ug — ul||y- Similar estimates are possible for the following Lemmas.
The next Lemma uses the extensions a”(-,-), f*(-) of a(-,-) : U x V —
R, f(): V=R

Lemma 5.1.3. Violated continuity: Let (5.2), (5.3), (5.4) be satisfied, U} ¢
U, VI ¢ V violate the continuity conditions, (4.15), ug € Uy and ul € U} be
an exact and the approximate solutions, defined by

a(ug,v) = f(v) Y v € Vy and a"(uf,v") = f(v") Vol € V],

resp. (5.3). Then, with C, independent of h,

h h ,h

- . Bk |a" (up — ug,v")]
U — u <C| inf |lug—u + su — o) {514
luo — ubfy < (uhewll A T A

In Lemmas 5.1.2 and 5.1.3 it might be, e.g., for isoparametric FEs, that
in (5.7) and (5.14) the a(ug,v") and a”(ug,v") have to be replaced by a
modified a”(uo,v"), which might again not be defined V v" € V}. Then we
may have to replace |a(uo — ul,v")| and |a"(uo — ul,v")| by the modified
la (2" — ul,v™)| with small ||2" — ug||%, see Section 6.4. Without loosing
accuracy, for 2" the P"uy sometimes may be chosen, whenever it satisfies
1P ug — uol| < C [Jug —ul||% — 0, e.g. realized as the interpolation of ug, see
the following proof. Again, as a consequence of (5.2), (5.5), (5.4), the second
term on the right-hand side of (5.14) would be zero if U C U,V C V.
Therefore, it measures the effect of UM Z U, VI ¢ V.
Proof We present the proof based on the good approximation 2" € U}, e.g.
with [|2" —uollfy < 2inf,ngyn [luo — u”|lfy- This 2" replaces ug which can be
used in the standard situation. As a consequence of the inf — sup — condition
for a" we find for any u" € Y}, v" € V!, e.g. for uh = 2",
lub =l < et sup 1208 2L 0]

(5.15)
0£vh eV " 15,

The triangle inequality |lug —ud||, < ||z —uo|}y + ||uo — ub||}, and arguments
analogous to the proof of Lemma 5.1.2 yield the desired result. ]

For more complicated situations the exact scalar products a(u”,v"), f(v")
or a™(uh,v"), fh(v") are not computable. So we introduce, e.g. quadrature
approximations @"(u”,v") and f"(v") defined on U" x V* and V*, but only
for smooth enough (u,v) €U xV and v € V.

Lemma 5.1.4. Quadrature Approximations and Collocation: Let (5.2), (5.8),
(5.4) be satisfied for a"(-,-) and f*(-). This will be a consequence of the esti-
mates for quadrature errors in Chapter 6, see Theorem 6.5.3. Let ug and ul
be an exact and the approximate solution defined by
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a(ug,v) = f(v) YV v € Vy and @ (ul,v") = f*(v") Vol € VI

Finally, let a"(ug,v") be defined V v" € VI, or replace it , as above, by
a(zh, o) with small ||2" — uo||ly. Then we estimate, with C independent of
h,
~h(, h h
al(ul — ug,v
lwo—ullly <€ ( inf Juo—utll+ sup BtV
uh €Uy 0#£vheVp [|v ”v

|a" (uo, v") — " (uo, v")|

luo —uf|lfy < C | inf [uo —u®||}, + sup
= O oh eV [[oh]|%

+ sup £ ") — 'fh(vh)|> . (5.16)

0FvheVp ||Uh||'f;
Remark 5.1.1 shows that these results for the strong formulation yield the

estimates for the collocation case.

The first inequality emphazises the variational consistency error, the second
the quadrature errors for a”(uo,v") compared to @"(ug,v") and f"(v") and
fr@h).

Proof Here we argue with a smooth enough ug directly, assuming that
" (ug, v") is defined and a”(ug,v") = f(v") for all v* € V], see (4.20). Then

h h|(h ~h( h h ,h h(h
ellug —u"[ly < sup @ (ug —u”,0")|/(lv" Iy

0£vhevh

= sup |a"(ug —uo+up — Uhavh)|/||vh||}f;
0£vheVh

= sup |a"(ug —uo,v") +a"(ug — u”,0M)|/[WMI} by (5.5)
0£vheVh

< sup |a"(uo,v") = @ (uo,v") + (") — fH(WM)|/[I0"(I3
0F£vheVh

+ sup [@"(uo —ul,0")|/[l0"(I3- (5.17)
0#£vh eVl

With the uniformly bounded @”(-,-), we can draw two different conclusions
from the fourth or the third line above

ellug —u"llg < sup |a(uo,v") = " (uo, v™)|/[I" 1%

0£vheVh
+ sup (") = M)/ I["] + Cllu — u[ify (5.18)
0£vheVh
or
ellug —utllfy < sup [a"(ug — uo,0")[/Il0"|I3, (5.19)
0£vheVh

+ sup [f(0") = PPN/ + Clluo — w1
0#£vhevh
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Again the triangle inequality and the same additional terms as in the proof
of Lemma 5.1.2, see (5.9), yield (5.16). The 2" modification proceeds analo-
gously to the last proof. [ ]



6. Consistency and Coercivity for Variational
Crimes

Klaus Klaus Ausnahmen fuer starke resultate nachtragen

We want to emphasize that this Chapter mainly discusses estimates for the
weak bilinear forms. Exceptions are formulated in the coercivity and conver-
gence results of each Section, Theorem 6.1.1 and Sections 6.5 and 6.6. The
strong relation between these approximate bilinear forms and collocation en-
forces the study of the strong forms as well. Instead of the neutral Notation
4.1, we use in this Chapter the a(-,-), a"(-,-), a*(-,-), a.s.o. always for the
weak bilinear forms. The strong forms are denoted as as(+,-), a’(-,-), at(-,),
similarly for the operators, A, A" A" versus Aj, Ah, fi’;

The Lemmas in the last Chapter have been proved under the Condition
5.1. They show that we need the (uniform) continuity of f(-), f*(-), f*(-) and
a(-,-), a(-,+), @*(-,-) on Vs, VI and Uy x Vy, UP x V! and the inf — sup —
conditions for a(-,-), a™(-,-), @"(-,-) on Uy x Vp, Ul x V. Again, we have to
distinguish the different bilinear forms. Additionally, we need estimates for
a(ug — ul,v"), a*(ug — ul,v") and the quadrature or approximation errors
a(ug, v") — @h(ug,v"), f(w") — fP(v"). To this end, we have to combine
approximation errors, inverse estimates for the norms of u" € U} or € U"
and v" € V! or € V" and results concerning the extension operators E*. To
apply the preceding results to nonconforming FE and spectral methods, we
estimate in this Chapter the consistency errors. Furthermore, we prove the
stability for coercive bilinear forms here and for the general case in Chapter 7.
It is important to realize that the proofs for the stability for coercive bilinear
forms sometimes needs the consistency results, but not vice versa.

The long Chapter is organized as follows: We will prove, for coercive bi-
linear forms, the discrete coercivity and the inf-sup— condition in Section
6.1. We extend this to the strong bilinear forms in Section ??. We estimate
classical and variational consistency for the different non conforming FEs for
linear operators, as introduced in Chapter 5. This will be done in Section 6.2
- 6.5. Starting in Section 6.2 we assume n = 2, from Section 6.5 ff. we again
allow n > 2, unless the preceding results for n = 2 are required. This will be
indicated. In Section 4.4 we had compared variational with classical consis-
tency errors introduced, e.g., in [58, 57]. For the standard approximations,
both definitions yield consistency simultaneously. We study here both types
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of consistency errors. Variational consistency represents the more familiar ap-
proach in the FE community. We present the results for linear second order
elliptic equations for FE and spectral methods. In spectral methods with-
out domain decomposition techniques the smoothness of the approximating
spaces is guaranteed. The boundary conditions in the finitely (but sufficiently)
many points imply exact boundary conditions. This is correct even for some
of the domain decompositions. For some recently suggested techniques, still
strongly developing, this is partially violated. In this case the techniques
in the following Sections will have to be appropriately modified for spectral
methods. Therefor, we discuss for spectral methods as variational crimes only
quadrature approximations.

6.1 Discrete Coercivity and Gauss Quadrature

Here, we prove the U} coercivity for U, coercive bilinear forms a(,-) and
show the desired discrete inf-sup— condition for the case U* # V!, and thus
stability for its discrete counterpart. Furthermore, we include the necessary
Gauss quadrature results.

6.1.1 Uniform Continuity, Discrete Coercivity and Consistency

We start by repeating the relation for the exact and the approximate bilinear
forms. In fact, both are defined independently of the imposed boundary con-
ditions (3.22). However, they live on subspaces defined by the boundary con-
ditions. They become relevant, when the weak operator, e.g., A : Hi(£2) —
H=1(02), see (3.19), and the strong operator A, : H?(2) N Hi(2) — L*(N2)
have to be compared. In (3.15) - (3.19) we had found

a(u,v) = < Au,v >H-1(Q)xHY ()= L ( Z aijaiu 6j’l) + Zaoj u 6]"1)
j=1

i,j=1
+ Z aio(0; u) v + agou v)dz (6.1)
i=1
= / (As u)vdz +/ (B, uw)vds ¥V u € Uy, v €V} with
Q a0
n n
B, u= Z vja;j0; u + Zujaoj u and
i,j=1 j=1
B, u = 0u/0v for the special case
a5 = ciéi,j VZ,] = 0, .oy n,eg., Asu = —Au.

It is obvious, that a(u®,v") is defined V uh € UP Cc U, v € YV} C V
if only the boundary conditions are violated. If additionally, the continuity
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conditions are violated, we had to modify the a(-,-),|| - ||, sometimes even
f(-). To obtain the relation between a”(-,-) and a”(-,-), we essentially only
have to replace du”/0v, in (4.27), (??) by B,u". So we find

a(uh, vh) = < Ayl ot >yihyp = Z / Z ai;j0; uh9; v"

TeTh i,j=1

+Zai0 (8; u)" + Zaoj uh (05 v") + agouv"dz)

=: Z ar(ul, o) = Z (/ (Ag uPyodz + (6.2)
TeTh TeTn VT
—}—Z/ (v [Bou" +[v] ) / v Byu™ ds
T Yo,

= uv—l—Z/leu —I—[v]au)

ecT
+/ v Byuds ¥ ul e Ul, v" € VI
an
with a”(u,v) = a(u,v) V u € Uy, v € V.

Now a few comments are necessary to distinguish the different cases. De-
pending upon the violated boundary or continuity conditions several of the
above terms disappear:

a(ul o) — ah Z/vl B,u"
ecT
for conforming FEs

a(uh,vh) - Z/ vf [Baul] + [v ]86‘111 )ds

ecT

for violated continuity (6.3)
a(uh, ") — al(uh, o) :/ vl Bou® ds
092
for violated boundary conditions
Yul eul, ot e Vi

For different violations we have to add the corresponding terms. If the weak
and strong solutions u} € Uh exist, they are determined by

a(ul, o) =< f,o" >yinyyn and a bl o) = (f,0 )v;hxv: Yol € VI6.4)
Correspondingly we introduce as in (4.42), (4.45) the

quadrature formulas " (u®,v"), @k (u",v") ¥ uh € Ul v" € VI, (6.5)
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see (6.75), (6.76) below.

To prove the uniform continuity for the linear and bilinear forms is left
a straight forward exercise. So, we assume that there exists a constant, C,
independent of h, such that

for [lully = l[ullar (o), lvllv = [lv]la (o) (6.6)
la(u,v)| < Cllully - ||v|ly and [f(v)] < Cllvlly VY u € Up,v €V} and
la(u,v™)|,  Ja™(u”, ™) < Cllu”|I}y - l0"1% V ut € U, 0" € V]

|a" (u", v")| < Cllu®lg, - 0", V u" €Uy U0 €V Vg, (6.7)
WM, 1M F@M)] < Cllot I ¥ ut e Uy, ot € V.
4 b b

This condition is satisfied for u € U,v € V,u? € U",v" € V" as well, for
|a" (u,v)| only if u,v are smooth enough to allow point evaluations. This is
indicated by U C U, VP C VI, |[ut||}, - [[v"]% in (6.7), see (6.75), (6.76).

The coercivity or inf — sup — results for the cases of Dirichlet or natural
boundary conditions and a(-,-), a”(-,-) are presented in the following Theo-
rem. This applies to violated boundary conditions and continuity as discussed
in Sections 6.2, 6.3 and with the necessary machinery in Sections 6.4 and6.5 as
well. For the general case of non-coercive a(-, ) the stability proof is delayed
to Chapter 7.

Theorem 6.1.1. Let A, a(-,-), a”(-,-) and Dirichlet or natural boundary
conditions be given as in (6.2), (6.2) and let h be small enough. Then a
Uy-coercive a(-,-) implies, for U} = VI, again U} -coercivity for a(-,-) and
a"(-,-). So there exists a constant a > 0 s.t., e.g.,

a(u",u") > a(llu® |7 (o)) V U3 (6.8)

For U,f” # V,f”, the uniform inf-sup— condition is satisfied. So, there exist
€,€ > 0 such that both inequalities

sup |a(u”, o")|/[[v*|} > ellu”llf; Vu® €U, and
0£vheVh

sup la(u”, v")|/|lu"|lz > €™} Vot € Vi (6.9)
0F£uh eUp

are satisfied. Thus, the Uy-coercivity of a(-,-) implies the unique existence of
the exact and discrete solutions ug and uf.

Except the extensions to a"(-,-), a?(-,-), @?(,-), instead of a(-,-) and to
non-conforming instead of conforming FEs this Theorem is identical with
Theorem 3.3.3 with changes in the Proof. Furthermore

Theorem 6.1.2. These results in Theorem 6.1.1, and similarly in Theo-
rems 6.2.5, 6.3.1, 6.5.2, remain correct for the approrimations a"(-,-), and
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for the strong bilinear forms, as(-,-), al(-,-), a’

: (+,-), introduced in Chapter
4. This statement requires the condition that the quadrature approximations
and enough points on every edge, e, have been chosen to guarantee quadra-
ture errors and differences in (6.8) vanishing with h. These conditions are

discussed in the following Sections.

Proof: For non conforming FEs we start with Dirichlet conditions and
need the anti-crime operator, E", see Theorem 2.6.3. This E* : U* — U
satisfies, for the case of Dirichlet boundary conditions,

I s — ullwy (@) < CR" "D lullwy(a) ¥ u € WS (). (6.10)

By the triangle inequality and the transition from u" to E"u” we immediately
obtain, for U = VI ¢ Uy the Ul coercivity of a(-, -).

To prove the inf-sup— condltlons let UP & Uy, VF ¢ Vo, UP £VE u:=
E™Mi" and choose us € H?(2) with |lus — u||H1(Q) < Chln—1 IS |us||H2(g)
With the interpolation operator I% : Vj, — VI let v} := Iiu, € V. Then The-
orems 2.5.1 and 2.6.3, see (6.10), 1mp1y [|vR —uh||{f{ < Ch(" D/ a1 (2 -
Therefore for small enough h

sup a(u”,o")|/[[v*[} > la(u”, vp)|/llogll}s > allu|l/2.
0#vheVh

For the Sup{o?éuheuh} |a(uh,vh)|/||uh||z’j, we start instead with v" and v :=

To prove the L[h— coercivity of a(+,-) for natural boundary conditions,
we use a modiﬁcation of the extension operator in Theorem 2.6.3. Instead of
aiming for E"u" = 0 on 812 our goal is here B, E"u" = 0 on 82, obtainable
with a slight modification of the above proof. Again this E” satisfies Theorem
2.6.3 and allows the same proof as above.

To prove the U —coercivity of a”(-,-) we combine a(u,v) = a”(u,v) Vu €
Uy, v € Vy again with E" and choose u = Es,u® € H?(2) with ||u —
sl i (2) < ChY?||us| g2 (2)- This implies

la" (u®, v*) — a(Ejul, B, o)
< la"(u" — EMu o™ + o™ (EPuP 0P — EboM))|
by ah('a ) - Cl(‘, ) on Z’{b X Vb
h h, bk bk h, h|h h h, hh
< M(”U —Eju ||H1(Q)||U ||H1(9) + | Esu ||H1(Q)||U - Ejv ||H1(Q))
by a"(-,-) continuous
- hih ik
< O™ D2t (g - 10" |1 (2
With |a(Eju”, E}u")| > o||[Eju”||3 ) the Uy —coercivity, and, similarly,
the inf-sup— condition is proved.
For curved boundaries and isoparametric FEs, see Section 6.4, these tech-
niques are modified to extend the above result to these cases. For the ap-
proximate @"(-,-) we combine it with the quadrature errors in Section 6.5.
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Finally, we combine the results in the following Sections with (4.27), (?7).
They show, how the difference between the weak and the corresponding
strong bilinear form in (6.3), and similarly the exact and the quadrature
approximation, can be estimated. The differences are bounded by the errors
for quadrature approximations, violated boundary conditions and continu-
ity. Under the conditions for convergence in the Theorems of this Chapter,
we have thus guaranteed the inf-sup— conditions for the respective bilinear
forms.

This implies the stability for A" for all these cases. Finally, the unique
existence of the ug, ug is an immediate consequence of Theorems 2.1.6 and
2.1.7 and Remark 2.1.8. [ |

Remark 6.1.3. In the preceding proof the density argument is essential: In-
stead u € H'(2) we changed to us € H?(f2), thus allowing to apply the
convergence results, e.g., in Theorems 2.5.1 and 2.6.3. This will be impor-
tant for the consistency results in the following subsections and the stability
results in Chapter 7.

We have to estimate the variational consistency errors as in Sections 3.2
and 4.1, see (4.13), and the generalizations in Definition 4.3.4. In contrast
to the classical consistency errors, we always have to assume, for the case
of variational consistency errors, that the discrete solution u} exists. So, we

assume the existence of the exact and approximate solutions uo and u2 of
a(ug,v) = f(v) Yo € V} or a”(ul,v") = (") Yot € V]!

with the general notations in Notation 4.1. If the boundary conditions are
violated we find for the wariational consistency error, see (4.13),

a(ug — ult,v™) =/ v" Byugds
a9
for violated boundary conditions for ug € H*(£2), Yo" € V. (6.11)

This is obtained, totally analogous to (4.13) by replacing —Au + cu by the
general operators A, A; and B, in (3.20), (3.26), (3.20), see (6.2), (6.3) as well.
Mind that here and below the use of ug instead of u” in (6.3) eliminates some
terms due to ug € H2(£2).Forviolatedcontinuityweintroducethejumpalonge=
TiNT; as [v"] := v*|1, —v"|7,, for an appropriate extension of v" outside of 2,
see Section 6.3. Combining (6.2) with a”(ul,v") = f(v") = a®(uo,v") Yo" €
VI by (4.43), we obtain, for the variational consistency error for violated
continuity

Tez;,h [ v"(Aguo — f)dz + [, 70" Baugds]
> fe [v"|Byuods V vh € V,?for violated continuitgf).'m)
eeTh

ah(ug — ult, vh)

Again this is obtained from (4.29) by the same generalizations A, As, B,.



6.1 Discrete Coercivity and Gauss Quadrature 101

Now we turn to the estimates for the consistency errors. We refer to [18,
17] and generalize some of their results to more general approximation spaces,
boundary conditions and second order elliptic partial differential equations
instead of their —Au = f . Asin [18, 17], we need estimates, e.g., for |a" (ug—
ul, vM)|/]|v"]|", see (5.8), (5.14) and (5.16) for the cases of violated boundary
conditions U ¢ Uy, V! ¢ V, discontinuous approximation spaces U ¢
U, VI ¢ V, and approximate evaluation (quadrature formulas) of a”(-,-) and
£() or fA(), resp.

The estimates for, e.g., |a(uo — ul,v")|/||v"||% and the |a”(uo,v") —
a" (u,
v™)|/||v"||% have to be determined for each case of variational crimes, see
Chapter 4 and 5, in detail. We consider the general case, (3.26), (3.19), start-
ing with the classical consistency errors first. It is independent of the existence
of a (unique) discrete solution, in contrast to the variational consistency er-
rors. As in Chapter 2, see (2.34), we require

Condition 6.1 Conditions for FEMs: Choose FEM with piecewise polyno-
mials P and a mazimal T > —1 (ywith usually 7= —1,) as

Pm-1 CP C Pugr, withT > =1, and P # Puir, for 72> 0.

Let the subdivision be non-degenerate, see Definition 2.4.5, s.t. a uniform x
exists with the property: For every T € T" concentric inner and outer circles
D, and Dy exist, with Dy C T C D5 resp., and diam D,/ diam D; < y.
Every T € T" at the boundary has at most one curved side, see Figures 2.18-
2.20 above. Let 02 be piecewise smooth. Non smooth points of 02 are used
as vertices of sub triangles, compare Condition 6.2.

Mind that for the interpolation results, which we need below, we alway
need FEs satisfying (2.34). For the Doedel collocation we have to relax the
strictly local definition of the interpolation operator.

6.1.2 Univariate Gauss, Gauss-Radau, and Gauss-Lobatto
Quadrature Formulas

We have to distinguish in the rest of the Booklet interpolation and quadra-
ture errors. The latter often have to be estimated for v, v» € U" V". So
we use three types of Gauss formulas, see Lemma 6.1.4 below. They are dis-
tinguished by the requirement that either none, one or two boundary points
are included in the corresponding collocation grid points. They are defined
for Legendre and Chebyshev polynomials w.r.t the weight functions w = 1
and w = (1 — mz)% on the interval [—1, 1], resp. We introduce three types of
univariate polynomials, P/, € pm = PL.,. p=0,1,2, based on the Legen-
dre and Chebyshev polynomials T,,,: € P™ and P, € Pm’, resp., to define
quadrature formulas of the type of
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Gauss: p=0 :P%, = P, or P,%, := T, and for both cases
Gauss-Radaw: p=1 :P}, =P +aP? | ,witha
such that P!, (-1) =0,
Gauss-Lobatto: p=2 : P2, := P2, +aP?, | +bP% _,, with a,b
such that P2,(+1) = 0.

The m' collocation points y; ==y;, j € {0,...,m' — 1} for the quadrature
formulas are defined as the roots of the polynomials

PP, (yf) =0 for j €{0,...,m' =1}, p=0,1,2. (6.14)
The corresponding weights are then computed via the Lagrange elementary

polynomials, pf, as
2 e pm PiW)) =9, V0 < 4,1 <m'—1as
1
wj 1 =wh = /_1 pf(z)w(z)dz, p=0,1,2,
with the above weight function, w. The following Proposition is proved in

many textbooks, e.g., in [23]:

Proposition 6.1.4. Let —1 < yo < --- < ym/—1 < +1 be the above roots of
the P, form' € N, p = 0,1,2, and w; := wf the corresponding weights.
Then the quadrature approrimation q{l?’ (u) is defined as

m' -1 1

au () = Y uly))ws “/ u(@)w(z)de, (6.15)
=0 -1

qml (u) := qzunlzl (w), foru € C[—1,1] and satisfies
m’'—1 1

" (p) = 3 plw] :/ p(@)w(x)dz, for all peP>™ 17,
§=0 -1

This implies for scalar products, (u,v),, w.r.t the weight function w that

m'—1
(,0)0 = (u,0)7 =g (w-v) = Y (u-v)(y))w)
7=0
for ue PP veP™1 and p=0,1,2. (6.16)

So (u,v);”' exactly reproduces scalar products fo,r u,v € P -1 for p=10,1,
and for p = 2 only for one of the u (orv) € P™ 2.
6.2 Violated Boundary Conditions

In this and in Sections 6.3, 6.4, we consider no spectral methods, but FEs,
since only they do violate boundary conditions and continuity. Furthermore
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we assume n = 2 in this and Sections 6.3 and 6.4. The discrete solution u

is obtained from the original a(-,-) as

a(ul,v™) and f(v") in (6.2) are defined Yu" € U}, v" € VI, (6.17)

determine uf € U} from a(uf,v") = f(v") Vo € V.

6.2.1 Consistency Estimates for Violated Boundary Conditions

As in Section 4.1 we have to estimate for (6.11), see (4.13), (3.20), (3.22),
(4.10), the variational consistency error

2 2
a(ug — ul,v™) :/ v Byugds = / (Y vjaij0; uo + Y vjao; uo)vids,
80 80 ij=1 j=1

ug € H*(2) Vo € V. (6.18)

This remains correct, if uo and yg are replaced by an arbitrary u € H?(12)
and u" with A*uP = Q" f) := Q " Au, see (4.122). For the cases V, = H'(12)
and V, = Hj(12), see (3.19), (3.22), (4.114),(4.115), we have

Q’h : H_I(Q) - VI?I : (thfa Uh)H—l(n)le(Q) ={/f, Uh)H—l(Q)le(nfﬁ-lg)
Al = thA|u: U = V) st (Ahuh,vh)H_l(Q)xv: = a(ul,v") Vol € V]

To determine the classical consistency error we choose the interpolation op-
erator, P" := I" see (2.31) and

test APIMy — Q'hAu with o® € V! for an arbitrary fixed u € Us.

We have to distinguish the two types of boundary conditions in (3.22) and
combine (3.19), (4.13) to obtain

Theorem 6.2.1. Let Q' and A" be defined in (6.19) and choose u € Uy N €
H?(£2). Then the violated boundary conditions for the test functions v* € V}
are reflected in the variational consistency error and the classical consistency
error as

a(u —ul vh) = / v"Bouds for AMut = Q" Au ¥ v" € VI, (6.20)
on

and man koennte auf fag vPB,uds verzichten und alles scheint korrekt zu
bleiben !

h e V] always introduces the violated boundary or continuity

terms. A direct estimation of (A"I"u — Q" Au, Uh)vh/ «yr would introduce some
b b

! testing with v

type of fan "B, (I"w — w)ds. This is more complicated to study than the terms
in (6.21). The same is true for violated continuity.
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(AR Ty — thAu,vh)Vgl/ Vb = a(I"u — u,v") — /39 v"Buds. (6.21)

They can be estimated as

sup {la(u—u",o")|/|l"[I}} < sup I/ v" Byuds|/||[v"|I};,(6.22)
0#£vh eVl 0£vhevp Jon

and

[| AR Ty —Q'hAuHV:r < sup (la(T"u —u,v™)| + | [5, v"Bauds]) /|[v"|%
0£vhevh

<Ol —ullgroy +  sup | [5ov"Bauds|/||o"|%. (6.23)
0£vhevp

Theorem 6.2.2. Natural boundary conditions: Under the conditions of the
last Theorem, the boundary terms in (6.22), (6.28) vanish, if u or the exact
solution ug satisfies the natural boundary condition, hence

a(u —u, 0" = / v"Bouds =0 for Buuloo =0V ot e V,f C V(6.24)
EYe)

For general v" € V,f it cannot vanish for Dirichlet boundary conditions (for
u and Vy), since the v do not satisfy this boundary condition exactly.

For satisfied natural boundary conditions, Byu|so = 0, the variational
consistency error is always 0, the classical consistency error is a O(||I"u —
ul|g1(2)). This implies the same error estimate as for conforming FEMs,

lluo — ulll () < CH™ |uol| grm (2)- (6.25)

Estimates for ||I"u — ul| gr1() are known from Theorem 2.5.1. So, for natural
boundary conditions the classical consistency results are equivalent to those
for interpolation errors. Therefore, we are left with the problem to find

6.2.2 Consistency Estimates for Violated Dirichlet Conditions

For v* € VI ¢ V,, hence v"|so # 0, an estimate depends on how well v"
approximates v"|5p = 0 and how this implies | fao v"B, uods| to be small.
The following steps involve quadrature errors and inverse estimates. First, we
use Proposition 6.1.4 to estimate | [, fds — preag w;(h) f(Pf)| for f €

W™ (). Here, the PJ‘-" € 02 indicate all quadrature points along all edges on
012, or on a section of 02 or its approximation. The w;(h) indicate the cor-
responding quadrature weights. For FE methods we only consider Legendre
polynomials with w = 1. Rescaling [—1,1] to [0, 4], a modified Proposition
6.1.4 reads as, see e.g., [18],
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Proposition 6.2.3. For all m' € N there exists C = Cpyy Y0 < h < 1, s.t.

h

m' —1
| / F@)dz— S wy fHE] < O 27|00
0 =0

V feW2™=r[0,h] N C[0, k], (6.26)

with p = 0,1,2, for Gauss, Gauss-Radau and Gauss-Lobatto quadrature
points h&; := h(yj+1)/2 and y§ the zeros of the Legendre polynomials P},
of degree m', see (6.14).

These Gauss-type points are used for conforming and non conforming FEs,
resp. Now we have to specify the v® € V}'. We choose for each straight or
curved boundary edge e a parameterization

e = {xp(s) : s € [Se, Se + he],s = arc length}. (6.27)
With the &; in (6.26) we define the boundary nodes to be
xy(Pf) = mp(se + hej) €€, =0,1,...,m' =1
VY ee Th with #{e N8N} = 2. (6.28)
This allows to define

Vg‘ ={v: 2 >R:vjr €Pp V TeTh,
v vanishes at all boundary nodes zy(Py)} (6.29)
We apply (6.26) to the special case of f = (v"B,u) o z; with the above

parameterization zj for e C 2 and v"B,u € Wk (). We use (2.4) for
p = 00, (6.2) and the product and chain rule to estimate

1((v" Ba w) 0. 20) M Iz a2) < Ci llullyys ) [0" yminesmsrs )

Yu € WEF2(02), " € V! | (6.30)

with v" locally of degree < m+7 and C,, depending on powers of order < k of

different derivatives w,()j ), j=0,...,k,and j = 0,1 for straight edges. Finally,

inverse estimates yield for (6.26) and Condition 6.1, see e.g., Proposition 2.5.3
and Theorem 2.5.4 with n = 2,

V|l yi o < C REI=R19=2/P)||uh |y o) for FEMs and
Wi (£2) (1)
0<I<j<m+7,1<qg<p<oo Yheuh or eVt  (6.31)

We need repeatedly the estimates for the interpolation errors: If Condition
6.1 and v € W ({2) are satisfied, then
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lv — Ik s(2) < C h™*lvlwm(q) and
||v— Ih11||WPs(T) < C ( diam T)™ *|v[m(r) for 0 < s <m. (6.32)

A quasi-uniform subdivision in Condition 6.1 is necessary, if 1 < p,q < o0
should be intended in (6.31). We summarize the conditions for the boundary
and the quadrature formulas defined by their boundary points, see (6.26):

Condition 6.2 Conditions for boundary and quadrature: Let 812 be a piece-
wise smooth boundary. We allow a curved boundary and introduce 802" and
the points P; along 012 as in Subsection 2.7.1, see (2.87). We delay isopara-
metric approzimation to Section 6.4. Let the segments e C 012, see (6.27) be
defined by these Pj, Pjy1, see (2.7.1). Choose a quadrature approzimations
according to Condition 6.1, (6.14), (6.15), (6.26) along the above closed seg-
ments e of the piecewise smooth 82 C R%. Impose Dirichlet boundary con-
ditions in m' points z.(P/) € 02 Ne, p = 0,1,2, see (6.28), or close to
02 Ne. These P/,i = 0,...,m' — 1, are defined as Gauss, Gauss-Radau
and Gauss-Lobatto points according to the chosen quadrature approximation
along the segment (, parametrized by xp w.r.t. the arc-length, see (6.27)).
These points, xy(Pf), possibly except P; = Py, Pjy1 = PP, | are addi-
tional to the above. For polygonal 812 we have m' < m + 7 , for curved 812
cases with m' > m + 1 are not excluded.

In fact, we have to distinguish two cases:

Polygonal 812: The piecewise linear z, implies v"* € Ppq, and yields
vh oz € Ppuyr. Now m' > m + 7 boundary points with v"(zy(P;)) = 0,5 =
0,...,m' — 1 implies v* = 0,v" o 2, = 0, hence the Dirichlet boundary
conditions (D.b.cs) are satisfied exactly. Hence violated D.b.cs. imply m' <
m + 7. Whenever pl. € Pl \Phi,_1- This m' < m + 7 is equivalent to
violated D.b.cs., this is particularly correct for 7 = —1. Now, we assume the
same number of functionals on every edge to define the FEs, see (2.50). Then
violated boundary conditions for

h
h

m'<m+7 and ple € Ppy \Prsr 1V e €T

are equivalent to violated continuity. This is discussed in Section 6.3 with
a(-,-) replaced by a”(-,-). In fact it is possible for large enough m(> 6), see
Proposition 2.3.1, to have ple, plePles € Prsr \Prtr—1, for the three edges,
e,e1,es C T and still have p € ’P;PerT.

Curved 012 requires to discuss, for e € 912, every specific situation sep-
arately. In particular, m’' > m + 7 does not allow to conclude v" o 23|, = 0
as above. Thus, it does not exclude violated Dirichlet boundary conditions.
Hence, see (2.50), violated boundary conditions do not necessarily imply vi-
olated continuity.

In this Subsection, we only study Dirichlet conditions and we need for
the proof of the next Theorem the following Lemma 6.2.4. It discusses the
influence of boundary values onto the necessary estimates.



6.2 Violated Boundary Conditions 107

Lemma 6.2.4. Under the Condition 6.2 and for arbitraryu € W2 +2-¢((),
we choose A, a(-,-) and Dirichlet boundary conditions as in (6.2). Further-
more, we define V' as in (6.29). Then there ezists a constant C, = C(p,m, X)
s.t.

| 50 UhBau ds| < Cp h””u”WOZOM’-H—p(_Q)||Uh||'IL{1(Q)

Vo' € VENHY(2) ¢ HY (), for (6.33)
p:=2m' — p—min{2m' — p,m + 7} + 1/2. (6.34)

(If o € VI nW}(12),1 < q < oo, then (6.33) still holds with a slightly
changed exponent of h).

Proof The (6.26), (6.30)and (6.31) with/ =1,j = m+ 7,p = 00,q > 2 are
applied to every edge e € T € T" with length h. and fi(e N 8£2) = 2. With
the parameterization z; for e, see (6.27), this yields see (6.29), (6.30), (2.4)
and with ¢™ (v"B,u) oz = 0 Vo € V) and ' := 2m’ — p, we find

Sethe
|/’vhBau| = |/ (v" Byu) o zyds|
e Se

'+1 h
S Ch‘é ||u||WéLo’+1(T)||U ”ng“{ﬂ",m‘f""}(T)
< Ch* +1hé*(mm{ﬂ ,m+T})*2/q”u”W&:+l(Q)”Uh”qu(T) (6.35)
_ Chg,+2—min{u’,m+‘r'}—2/11||u||w£+1(9)”Uh”qu(T) or

< ORI g [0, for g =2

Summation over all edges e along 0 {2 yields, for ¢ = 2,

| v Byuds| < Z|/vhBauds| (6.36)
o n e e

< Chu:+17min{u’,m+‘r}71/2||u||wgol+l(9) (Z hé/2l|vh”H1(T)>

S Ch[l, 7min{ll am+T}+1/2||u||Wg°/+1(Q)||'Uh||’}{1(9);

since, by the Hoelder inequality and (2.17),

1/2
> P gy < (Z he> l[0" %1 () and Y he < 2x (arc-length of 012)

€

for small enough h. So we obtain (6.33) with the above u. |

Before we formulate the next Theorem we have to study the behavior of
the complicated p in (6.34). We have seen that
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m'=m+71—k, k €Z is possible, (6.37)

with & > 0 for polyhedral 02 and k € Z for curved 9f2. This shows with
(6.37)

m+7 for m'—p—k>0,

. 12 _
min {2m —p,m+7'}—{2m,_p for m'—p—k <0,

s.t. (6.37) implies

fm'—p—k+1/2>1/2for m' —p—k >0,
1/2§,u—{ =1/2for m' —p—k <0.

We want to estimate [|uff — uo||m1(e) in Lemma 5.1.2 and the variational

and classical consistency errors. We combine the conditions for u and the

exponents of h in Theorem 2.5.1 [lv — I"|lf1 ) < C A" Holwm (o),
P

with those for inf»cyn lu" — uo||lm1(e) and in (6.33), (6.34): We need

u € wma{m2m'+2=0} 5nq get hmin{wm—1} Since we aim for convergence
of the form |jul — “0||’V1V1}(9) < C h% a > 0, we assume m > 2. Again as

above (6.37) implies

!
—p—-k<
m for m'+7+2-p k—0(6.38)

! p—
max{m, 2m' + 2 P}—{Qm’+2—p for m'+7+2—p—£k>0.

Finally, with (6.38) and by considering the two cases m' —p—k >0 and <0
we find, for m > 2,

m—1form'—p—-k>0,3/2+7—p—2k>0,
1/2 <min{p,m -1} =< p form'—p—k>0,3/24+17—p—2h<0,
1/2 form' —p—k<0.

For the proof we need Remark 6.1.3.

Theorem 6.2.5. Under the conditions (6.2), (6.2), Condition 6.1, (6.19),
and Condition 6.2 with Dirichlet conditions, let u € H 1(MIQ) Then AP =
Q hA|u: is consistent with A in u. Let u" for Ahuh = Q"Au erist. For

u € WEmadm2m'+2=0} Oy 4he variational and classical consistency errors for
u vanish of orders p and min{m — 1, u}, resp., see (6.34), (6.38). They can
be estimated, with a h -independent C, = Cip . p.2y), bY

|a(u B uh7vh)|
Subp AR
0F£vhevp [|lv ||H1(n)

||AhIhu _ Q’hAU“VgL’ < Chmin{mm—l}”u”Wmax{m,Qm,_,_Q_p}.

< Cphullullwfom'+1—9(9): and (639)

Then a Uy-coercive a(-,-) implies, for U = VI, again a Ul -coercive a(-,-).
For Ul # V! and for as(-,-), the uniform discrete inf-sup— condition is valid
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for a(-,-). This implies the stability of the corresponding A" and the existence
of uh,ub.
h

The weak solution ui converges to ug according to

llug — woll g1 (a) < Chmin{“’m_l}||U0||W;ax{m,2m (6.40)

’+1—P}(Q)'
These results, see Theorem 6.1.2, remain correct for the strong bilin-
ear forms, as(-,-), al(-,-), introduced in Chapter 4. This statement re-
quires the condition that enough points on every edge, e, have been cho-
sen to guarantee differences in (6.3) to vanish with h. For the strong so-
lutions (for as(-,-)) the (6.40) has to be modified as [luly — uollaz(a) <
Chmm{”’mfz}||U0||W£ax{m+1,2m'+1—p}(m-
Proof Remark 6.1.3 shows that we can assume u := u, € Wmax{m2m'+2-¢} )
approximating the original u € W22 ((2). This argument has to be repeated for
the other convergence results as well, without mentioning it every time. The
estimate (6.39) is an immediate consequence of (6.18) and Theorem 6.2.1,
Lemma 6.2.4 and Remark 6.1.3, (6.40) is obtained either by combining the
stability result in Theorem 7.2.3 with the consistency estimate in (6.39) or
by a combination with Lemma 5.1.2, see (5.8). [ |

6.3 Violated Continuity

Here we consider all types of non conformity caused by U ¢ U still with n =
2. This includes violated continuity or smoothness. Then often the boundary
conditions will be violated as well. For a detailed discussion, see the discussion
following Condition 6.2. Violated boundary conditions are partially included
in the following discussion for polygonal 0f2, however, it yields results of
the same quality as for violated continuity. They are slightly worse than in
Subsection 6.2. For curved boundary and isoparamtric FEs the techniques of
Subsections 6.2 and 6.4, resp., and the results of this Section can and have
to be combined.

We have seen already, that for the same number of functionals on every
edge defining FEs in (2.50), for polygonal 8{2, violated boundary conditions
are equivalent to violated continuity. Again, for curved 0f2, every specific
situation has to be discussed, see Condition 6.2 ff.

For noncontin uous U ¢ U, the a(-,-), || - |lu, sometimes even f(-), have
to be generalized. We delay the case f* # f to Section 6.5 and assume
here f* = f. With the norm [[v"||* defined in (2.17) and the generalized
a”, compare (4.16), (6.2), we obtain with partial integration as in (3.20) and
(6.2), (6.3),
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2 2
al(uh, o) = Z (/ Z a;;0; uha,- P +Zai0 (0; uh)vh
=1

T

TeTh *Tij=1
2
+X:“Oj u" (85 ") + agouv" dz) (6.41)
j=1
— B, hy _ Ry, h h h
= Z ar(u,v") = Z(/(Asu v dx+/ v" B, u'ds),
T 8T

TeTh TeTh

with B, as in (6.2). The a(-,-) and the generalized forms a”(-,-) are related,
see (6.2), and the exact and discrete solutions up and ul are defined as

a(ug,v) = f(v) v €V, and a"(uf,v") = f(W") Vo € V",  (6.42)

resp. We collect the conditions for the actual case in

Condition 6.3 Conditions for interpolation points on edges: We require
Condition 6.1, (6.42) and a modified Condition 6.2: Replace the Dirichlet
conditions by interpolation conditions on edges, e , in the above P! €€,i =
0,...,m'—1. This implies continuity of the FEs in these points P but not in
2. Choose anm' < m+7 s.t. v € V" andv"( Pf) =0,i=0,...,m'—1, does
not imply v"|e = 0, hence, v" is not continuous across e, see the discussion
following Condition 6.2. If we consider a problem with natural boundary con-
ditions we do not have to impose boundary conditions. If we want to include
Dirichlet boundary conditions we additionally impose the original Condition
6.2 along the boundary 012 which we assume to be polygonal in this case.

Now, let e be a joint edge of T3 and To € T". Let v, be the unit normal
vector oriented into T». Define the jump along e as [v"] := v"|1, — v"|7,.

To include violated boundary conditions once more we have to distinguish
natural and Dirichlet conditions. We have seen already in Section 6.2, see The-
orem 6.2.1, that for natural boundary conditions [, 50 vPByuds = 0V Byu =
0. So, we can restrict the discussion to the Dirichlet case: We choose, for
T1Nd 2 D {P, P}, for the boundary edge, e., a T, C R2\2,e C T, N T,
satisfying Condition 6.1. Crossing a straight boundary edge, e, we define
an extension of v" outside of 2 essentially as negative flip, that is: For
the outer unit normal vector, v., 6 € h and a point P € 0 2 let
P (P + dve) := —v"(P — év,). Obviously, we have for this extended v" the
relation [v"] = [v"* — ¢] Ve € R.

Combining (6.41) with a”(ul,v") = f(v") = a®(uo,v") Vot € VI by
(6.42), we obtain for the variational discretization error for ug or a general
u, u with
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A= QM Ay, APt = QM 1= Au, we HY(D),

Ry _ b Ry — hA _ d hBa d
a"(u—u",v") T§h[/Tv(u f1)w+/8Tv us]
= Z/ v"Byuds = Z [v"Byuds.  (6.43)
aT

TeTh ecTh“ ¢

Obviously, we find for boundary edges 912 for both types of boundary condi-
tions [ [v"]Byuds = 2 [, v"Byuds. So, for the above extension to T, C R*\£2,
this approach allows to include the discussion of Section 6.2 as well, however
it yields slightly worse results.

Now we proceed very similarly to Section 6.2. With (Q'"f, U")v:: VP

<thf7vh>H;1(Q)><H,1l(Q) = (f, Uh>Hh—1(Q)XH}1L(Q) as in (6.19) we define, com-
pare (6.19), and Notation (4.1),

AP Ul 5V as uh - AMut = QM AUl st (6.44)
(Ahuh,vh)Hgl(Q)xH}l(Q) =al(ul, o) Vot e V]
For the proof we again need Remark 6.1.3.

Theorem 6.3.1. Let (2 and the FEs satisfy Condition 6.1, (6.42), Condition
6.3, f € L?(2). We choose A,a(-,-), B, and a"(-,-), A® as in (6.2), (6.2)
and (6.43) and assume u" to be the discrete solution of APu = thAu.
We consider natural or Dirichlet boundary conditions. In the latter case,
Condition 6.2 has to be required additionally. > The classical and variational
consistency errors are

(AR My — thAhu,Uh)v::xv: = a"(I"u — u,v") — Z [v"|B,uds and
eeTh ™
v B,uds
ety 15, R
T

, Tesp.
o T e

Foru € H'(02) the A" is consistent with A inw. Foru € W™ ”I+2}(()), w
in ( 6.46), the classical and variational consistency errors vanish of or-
ders min{m — 1, p'} and p'. They can be estimated with h -independent
Cp = C(m7n’p7wb)’ by

14" I = Q" Apullyp < CH™ Hulgrm ) + Coh* Jull rurs2(02y> (6.45)
|ah(u - uh:vh)|

h
||”h||H1(Q)

sup < C’ph’“‘l||u||H,ir+2(m. with
p=2m'-1—p—(m+r). (6.46)

% If we want to include violated boundary conditions independent of Section 6.2, it
is convenient, to require a polygonal 92. Otherwise, we have to add the modified
error terms for violated boundary conditions in Theorems 6.2.5 and 6.4.2.
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For a Uy-coercive a(-,-) this implies, for Ul = VI, again a UJ-coercive
ah(-,-). For U} # V}, the uniform discrete inf-sup— condition is valid for
ah(-,-). This implies the stability of the corresponding A" and the existence
of ul, ul

» Y0 -
The weak solutions (for a"(-,-)) converge according to

hmin{mf 1

lug — wollzr1(2) < C 0| rmsm 423 3)- (6.47)

These results, see Theorem 6.1.2, remain correct for the strong bilinear
forms, al(-,-), introduced in Chapter 4. This statement requires the condi-
tion that enough points on every edge, e, have been chosen to guarantee the
differences in (6.8) to vanish with h. In the convergence result for the strong
solutions (for al(-,-)) the (6.40) has to be modified as |uf — uollm2(n) <
Chmm{ll ’m_z}||U0||Hmax{m,u’+2}(())-

For the proof we need
Lemma 6.3.2. Let Ty, T, be two neighboring triangles Ty € Th, Ty € T" (or
C R\?2) with diam T; < h,i = 1,2 and a joint straight edge, e € Ty U T».

Furthermore, let (6.2), (6.2), and Condition 6.3, u € H*+2(Ty UTy), and
vt € U} or VI be satisfied. Then, with p' in ( 6.46),

| / [0"]1Ba uds| < Cong b ([0 111y + [0 11 (1) | Ba g1 7, 06-48)

Proof To apply a technique as in Proposition 6.1.4 to our problem, we chose
the two triangles (or rectangles) Ty,T» as above and let G := T1 U T with
the common edge e of length h, = h. The substitution ¢ = h(s + 1)/2 then
transforms (6.15), with y; = yf,w; = wf, into

7=0

h m'—1
/q(t)dt = /q(t)dt =h/2 Y wiq(x;) ¥ qeP™ 174
‘ 0
Tj = h

(y; +1)/2,j=0,...,m' — 1. (6.49)

This result is only valid along a joint straight edge, e C Ti UT3, since
otherwise the parameterization usually destroys the polynomial structure
of q(t). We apply (6.26) to w[v"],w = B,u. With the above definition of
[v"] = vP |7, — v"|7, along e we have [v" — ¢] = [v*] € P™*7 for every c € R.
Now we study the single terms [ [v"]Byuds in (6.18). So, by (6.15), (6.49),

/z[vh]ds = /z[vh —dds =0 for [v"] € P™7, 2z € P* with
e e
W=2m'-1—p—(m+r7). (6.50)

Hence
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|/w[vh]ds| - |/w[vh — dds| = |/(w — )vh — dds| ¥ z € P
e < ||we— 2|2 (e) - [lo" — ce||Lz(e) by Cauchy-Schwarz-inequality
< Cllw = zllm ) (V" = ellmrery) + 0" — cllmr(z)) V z € P
this last inequality is obtained from the Trace Theorem 2.1.3, for our case
and p =2 by
lollzae) < Clloll2 ol < Clillimn) Yo € HY(G).
Since the v" match in the P? we can choose an appropriate c, s.t.
(0" = eller () + 10" = el 1) = (0" a1 () + 0" [E1(73))

with the usual semi norms for H'(T;),i = 1,2. Using (6.50) and the averaged
Taylor polynomials, see (2.8), z := Q* Tlw € P* we find,

| [ wlo"1as] < Cllw = @ i @ (onliscay + onlan ). (651
[
This yields finally with the Bramble-Hilbert Lemma 2.1.5,

|/w[vh]ds| < Crnyh* |w|HM:+1(G)(|vh|H1(T1) + |vnlEr (1))
and h = max{ diam T}, diam T} > h.. (6.52)

With the above convention concerning Ty C R?\ (2 this result (6.52) remains
valid for Ty C R?\(2 as well. Now, we apply (6.52) to the case w = B, u. We
compare it, see (6.51), with Q* T B,u € P* to verify (6.48). [

Remark 6.3.3. Indeed, the last Lemma and its proof apply to the case of
violated boundary conditions as well, if the above conditions are satisfied. We
obtain worse results here, since the exponents p =2m'+1/2—p—(m+71) >
u =2m' —1—p— (m+ 7). This yields better convergence for the approach
in Lemma 6.2.4 and Theorem 6.2.5.

Proof (for Theorem 6.3.1) Similarly to Theorem 6.2.5 the consistency er-
rors are immediate consequences of Lemmas 6.3.2 and 6.3.2, for Dirichlet
boundary conditions. If the FEs satisfy Conditions 6.3 and 6.2 for Dirich-
let boundary conditions. Then we obtain by summation over all e € 7" in
Condition 6.1 and with G, := G indicating the appropriate G for e,

| Z /[vh]Bauods| < Ch Z |vh|H1(Ge)|Bau|H#,+1(GE) since 3
e€Th "¢ eeT™

S Ch“l Z |Uh|H1(T)|Bau|H#’+1(T) (by Hﬁlder)
TeTh
S Chul|’Uh’|§L{1(Q) . |Bau|H,,/+1(Q). | (653)



114 6. Consistency and Coercivity for Variational Crimes

Remark 6.3.4. It is important to realize that (6.48) is strictly local with the
local step size h and the locally appropriate |B, u| HE'+1(G) and holds for

all uw € H¥'*2(G). This can be used into two directions. Either locally large
B, u and discretization errors are compensated by mesh refinements or the
so called hp-methods are employed. For smooth ug and B, ug, high values
of orders p = m — 1 and large h., for unpleasant ug and B, ug, small orders
p =m —1 and small h, have to be combined. We do not want to pursue this
point here any more to avoid too many technicalities. [

6.4 Isoparametric Violation of Boundary Conditions

In this Section we only consider the case of FEs in P = P,, 1. Motivated by
Theorem 6.2.1 we only discuss Dirichlet boundary conditions.

For the consistency estimates we recall the original and approximating
polygonal domains 2 and 2%, the functions F* : Q" — 0 .= Fh(0*), F,:
2" — 0 and ¢ : 2 — FR(Qh) = 08 ¢t := Fho F1 introduced in (2.93),
(2.95) and (2.96), resp. The FEs U} : 2" — R satisfy the interpolation
conditions along the boundary, see (2.94). We recall the definition of the

at, U, f, oM in (2.97), (2.98)

uh s ) = FM2") = R, a2 = R, A1) =u" (9" (1) = (u" 0 6")(D),
ﬁ,fb = {a" : u" € U}, and analogous

Vi, Fi0l 5 R, f(2) = f((0") (@) = (Fo (") ")(2) and
t — ¢"(t) = O(h™) implying (6.54)
(6" ~ Lo = O™, (")) ~ Idpn(any = O™

For simplicity we again formulate the results for n = 2. However, in [41]
they are presented for n < 3. Note that U C Uy, that is, the Dirichlet

boundary conditions are satisfied exactly for 4" € U and similarly for V.
For the u” € U}, v € V' in (2.94), with u?, v : F*(2") ~ 2 — R we define
the approximate bilinear and linear form, norm, equation 4 and solution u{

as

3 for 0 < a1 < a2,0 < by < by we have (a1 + a2)(b1 + b2) < a1b; + 3azbs and every
T € T" contains only a few edges, e.g., 3 for triangulations.

* for simplicity it is often assumed that f € Lo(F"(£2")). In this case the definition
frh) = th(Qh) f(z)v"(x)dz is used. We will show below, see (6.60), that
replacing |det(¢")' (t)| by det(¢")' (t) in the integral in (6.55) is correct.
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a(uh,vh) = / Vul(z) - Vo' (z)dz,

Fh(0h)
(o) = 1) = [ fat @) (6.55)

Fh(Qh)
= / F@)o"(t)det(d")' (t)dt Yol € V], with f = fo ¢,
[0
[ ||Uh||gv;(ph(m)) = ||@h||W§(Q)(1 +O(h™h),

see (6.61) below, and replace 7" by T/ in (2.17); here Vu"(z) - Vo' (z) =
(Vu'(z))T Vol (z). For the general case, we have correspondingly

2
a(uh oty = / ( Z aij0; u" 9; V" (6.56)
Fh(0h)

ij=1
2 2
+ Zaoj u” 9; v" + Z aio(0; u")v" + agou” v")(z)dz.
Jj=1 i=1
Now we define the appropriate Q" by
QM H D) =W (@M = 0"y

= [ @ - Dt @) =
Fh(2h)

- /ﬂ (@7F — 1)ty (t)det(s")' (1)t

= Q" = ), 0" det(@")) -1(ayxmy() =0 V0" € V. (6.57)
In a first step prove the discrete coercivity:

Theorem 6.4.1. Let 2 C R? be bounded and have a piecewise smooth
boundary. For the isoparametric FEs as introduced in Section 2.7.2. Use the
a’(-,-), f1(-) and Q" as in (6.55) and (6.57), resp. If a(-,-) is Uy— coercive,
see (6.8), then a”(-,-) is U}'— coercive as well or, for Ul # VI the a”(-,-) sat-
isfies the uniform discrete inf-sup— condition, compare Theorems 6.1.1 and
2.1.7.

Proof Again we essentially restrict the presentation to the Laplace operator
and use the substitution rule in

ah (uh, oty = / Vuh(z) - Voh (2)(dz) (6.58)
Fr(an)
= [ Vuh(@h @) - Vo6 ) det@) (), (659)
2

with Vu"(z)-Vol (z) = (Vu(z))T Vo (z). The usual | det(¢")'(t)| is replaced
by det(¢")'(t), since
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(¢")'(t) =id+ O(h™ "), hence, det(¢")'(t) =1+ O(R™ ") > 0 (6.60)

for sufficiently small h. For the above 4" (t) = u"(¢"(t)) and u”"(x) the deriva-
tives 8¢, V! and 8¢, V® always are understood w.r.t. variable ¢ for 4" and z
for u”, resp. Then we find with the unit vector e;

0" (t) = ofa" (t) = O(u” (" (1)) /0t = V=u" (9" (1)) 9i¢" (¢)
= V2u"(z)(¢")'(t)e; and
Vat(t) = Vi (t) = (V7u")(@" (1)) (6")'(t) = Vou" (z)(6")'(¢) or
diu"(z) = 87 u(z) = 8(a"(¢") "' (x)) /O (6.61)
= V" (197 ((¢") 7" ()
= V'a"(t)((¢") ") (2)e; and
Vul (" (1)) = V7u (6" (1)) = V! (@(¢") " (@) ((6") 1) (2)
= Vi) ((¢") ™)' (@)
Applied to the above (6.59) we find with (2.96)

ah(u,oh) = [ ((MY@T) V) - VI () det(o") ()
= ai,0") + O™ D s s - 19" s (6:62

Now, by (6.60), [|6"]| i1 () = [[v"[|%, (1+O(h™1)) and similarly for [|a" || g1 (),
so with (6.62) and U} C U, the Uy coercivity of a(a’,ah) 1mp11es the
up coer01v1ty of a(u”, u h). Hence, there exists a umque solution ul for
a(ul,vh) = fh(vh) Vol € VI, see (6 55). For the case U} # V] we proceed
as in Theorem 6.1.1.

For the general case in (6.56) we find, for smooth enough a;;, a;o, aoj;, aoo,

h= [ Zau OV (2, ((¢) @) - Vo) (6") (@)
+zao, Vit (1) 5((¢") (@)

+(Zaio(t)Vﬂh(t)ai((‘f’h)*l(m)) + ago(t) - 4" (t)) - o™ (t)adt

= a(@",o") + O™ Y)1a"| g1 - 10" | a1 (q)- (6.63)
An immediate consequence is

sup [a®(u,v") —a(@",6")] / [o*lmri(a) < Ch™Hlullm (q), (6.64)
0£vheVh

which we use in the next proof again. O
As second step we estimate the consistency errors:
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Theorem 6.4.2. Let 2 C R? be bounded and have a piecewise smooth bound-
ary. We use the isoparametric FEs and a(-,-), f*(-) as introduced in Section
2.7.2. Choose Q" as in (6.55) and (6.57), resp. and A" = Q hAh|u£L, with

< Ahuh,vh >H-1(Fh(QR)) x HL(Fh(02h))= ah(uh,vh) Y uh e L{,?,vh € VI?

For an arbitrary u, let the discrete solution u® with f = Au and Ahul =
Q’hAu, resp., exist and assume that A is boundedly invertible °.

Foru € H' () the A" is consistent with A in u. Foru € H™(2), m > 1,
the classical and variational consistency errors for u vanish of order m — 1
and ® can be estimated, with h independent C, by

sup [ah(uP, o) — a(u, ) /M) < OB ullis oy, (6.65)
0£vheVh

|4 u — Q™ Aullyr < Ch™ lullsrm (g, (6.66)

sup | f"(0") = F@")|/ 0" a1 (2) < CR™ M| flla-1(a)
0£vheVp

< Chm_1||u||H1(Q) (6.67)

(The invertability condition for A can be avoided, if ||ul|g1 (o) is replaced by
1flli-1 () with f = Au.)

Let a(-,-) be coercive, uo be the exact solution of Aug = f and ul the
discrete solution of (6.55). Then, for sufficiently small h,

lluo — g llmr1 gy < O™ ([luollzm () + lluollwz (a)) -
Proof The relations (6.63) and (6.64) imply

p a0 — a5

vheVI\{0} [0 | 1 (2)

< Ch™ ' |@"|| g1 (), hence (6.65)(6.68)

The error term for f can be estimated similarly:

® this condition can be avoided, if in the following estimates the ||u||gm (q) is
replaced by || f|lgm—2(a)
6 if this f € La(F™(2"))N Ly (£2) then f*(v") = th(nh) f(z)v"(x)dx can be used.

We find |(£,0") = [ gom) F0"dt| = [, (F() = F(6" () det(8")'(8)) 9" (t)dt]
< |Jfo (£8) = £(@"())) det(¢") (0" (t)dt| + | [, F(£)(1 — det(o") (1))0" (t)dt |
< C (W™ 1 lwa oy + ™ fllz2 ey ) 10" llz2 ey <
C (h™lluollws, ) + ™ ol (o) 10" llz2(ay for f = Auo,
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Ry  h
‘(f,v )= o T

[ (- 1@ty @) @”(t)dt\

01 - det<<¢h)-1)'<t))«>h(t)dt‘

< Ch™ I lla-1 @) 19" [l 2 (6.69)
< CH™ ullgi(o 10" 22 (o) for f = Au.

Similarly, to (6.18) we have to consider a®(u — u”, v") with Ahu? = QP Au.
However, the a®(u,v") in (6.55) is not defined. So we use, see Lemma 5.1.3,
the 2" := I"u and the corresponding 2" € U} with ||2" — ullgi() <
Ch™ H|u||gm (), see Theorem 2.7.1, and estimate instead a”(u”,v") —
a”(z",v"). For the case (6.55) we find by (6.62), and again with f = Au,

al(uh — Ihu,o*) = at(u”, ") - [, ((¢>") )") 'V ()

Vol (t)((6")' (1) 7" det(¢")' (t)dt
th an) folde — [, Vu(t) - Vo (t)dt
+O(hm 1)||U||Hm(9)||’Uh||H1(n)

= f(d" det(¢")') — [, —Audhdt — [, Teohds
+O(hm_1)”u”HM(Q)”U lr1(0)

= f(0" det(¢")') — f(0") + @O (W™ ") ||ull rm (02)
||1A)h||H1(Q) by (669) and ﬁh|ag = 0,

= O™ 1) ullzm ) 10" 51 gy, since [fullzs )

< Clflla-1(02)-

This directly yields
|a" (W = I"u,o")| < CA™ Hul| g () [10™ |31 Yu € H™(£2) NUE.T0)

If we consider instead of A,u = —Au = f the general case (6.2) - (6.3), we
obtain the same result with 92" /0v and du/dv replaced by B,2" and B,u,
resp., again annihilated by ©"|5 = 0. To obtain (6.65) let again f = Au and
Alyl = QP Au. Then

al(uh,v") — a(u, o")

h(uh — [ Vu - Vo (z)dx

Fh(ah) fv dw—fg Vu(t) - Vil (t)dt by (6.69)

(") — f — Authdt — fr) guphds

O S lull s oy 0"

= f(0") = f(") + O™ ) lullm (@) 19" |71 )
by 9" |ae =0

= O(h™ ) |ull oyl (13-

To relate these estimates to the general definition of classical consistency in
[57], we combine the last equality with (6.70) and the continuity of a(-,-) to
see

a
Jr
f
=f
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ja (T, ") = a(u, %)) < CH™[ull (e 10" 171 c2-

Now, with 9" € l>£” W

a(u, ") = (Aua’[)h)H—l(_Q)xf;gl = (QIhAU;Uh)V;L'XV;L(l + Oh™ |lullgm ()

||v*|ly» and (Ahuh,vh)vg.fxvg. = al(uh vh) (6.71)

the combination with (6.57) shows (6.66). The last estimate for ||lug —
45 |lg (o) is an immediate consequence of the stability combined with the
above consistency errors. [

Remark 6.4.3. 1) For isoparametric FEs the above nonlinear ¢", see (6.54)
determines the discretization. However, since (¢")' —Id = O(h™) the discrete
A" and G for the isoparametric case is still k— times consistently differen-
tiable with A and G in wg, resp.

2) For ald, coercive a(-, -) we obtain, for U = U] the U} coercivity of a”(-,-).
Otherwise we get the discrete inf-sup— condition for a”(-,-), a’(-, ). This im-
plies for all cases stability and convergence as above. We include this result
in this Remark, since we want to avoid to go through all technical details of
the proofs.

6.5 Approximate Operators, Bilinear and Linear Forms

In this and the next subsection we consider mainly quadrature approxima-
tions. They are defined with function values. Hence, the functions u, uo, f, aij, . ..
have to be chosen smooth enough to allow function evaluations. So, we impose
the following condition:

Let {2 be bounded and u, uo, f,aij,...,€ W, (22) C C(£2),
e.g.,form>1, mp>n. (6.72)

In the preceeding Sections we considered the more complicated varia-
tional crimes for FEs. They are caused by the violated boundary conditions
and continuity. Now, we return to general n and to the more straight forward
variational crimes for FE- and spectral methods. They are obtained by re-
placing the bilinear form a(-,-) and a”(-,-) and the corresponding operators
A and A" by quadrature approximations. To avoid a duplication of formu-
las and according to the Notation 4.1 in Section 4.2, we denote the original
bilinear forms and operators in this Section as a”(-,-) and A", resp. We will
show that

at(,) U x Vi - R and
hioh oh\ _ zh(sh o h
sup la® (u",v") —a*(u*,v")|

o — 0 for h—0Vul eUp. (6.73)
0£vhEVE (eI
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Similarly, we replace f or f", both denoted as f*, by f* with

f: V,? — R and sup |f~h(vh) _ fh(vh)'
0#vheVh ”vh”%

—0for h—>0. (6.74)

These a”(u,v), f*(v) are usually not defined for the original u € U,v € V,
since quadrature formulas require u(P;), see (6.26), to be defined. However,
convergence (and consistency) is only to expected for smooth enough ug,u.
For these ug, u the uo(P;),u(P;) have to be defined.

We proceed as in Sections 6.2 - 6.4: In a first sequence of results we
prove the U} coercivity and inf-sup—condition of @" (-, -) for Uy coercive af(-, -).
Then we estimate the variational consistency errors as indicated in (6.73) and
(6.74).

More generally than in (6.26) we assume to have a quadrature formula
q" (w) satisfying, for 7 some ¢, k,

[ w)is — @] < OW 3 ullwey Voeo@). (63

TeTh

We may choose w € U,U", V, V", or products of those functions. Usually, we
apply (6.75) to the sub triangles, T'. Then we find (, often even for C = 1, if
all weights are positive)

¢"(w) =Y ¢fw) with ¢p(w):= > wjrw(P;r) and
TeTH PjreT

|q;’}(w)| < C meas (T)||w||Loo(T) VT e T". (6.76)
We want to recall the Remark from Section 4.1

Remark 6.5.1. In these quadrature approximations (6.76), (6.77) the quadra-
ture points P; T may be chosen totally independent of the interpolation points
for the FEs. This contrasts to the situation for collocation methods. Here
quadrature and interpolation= collocation points coincide, see (6.98), below.

The quadrature error in (6.75) has the structure

DI / w(z)de — ¢h(w))| < C B Y Nlwllwe () = C hlwlliy (£§-77)

TeTH T TeTh

We apply this ¢ (w) to w = fv and to the terms in a”(u”,v") and a’(u",v")
to define

7 since errror estimates for quadrature formulas nearly always are formulated w.r.t.

the sup norm || - ||lyyx (7, We restrict the discussion to this case
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ety = >0 @ o= > > wir(fo")(Pir) an (6.78)

TeTh TET" P; v €T
~ 5 ~h
ah(uh,vh) =< Ayt ST = Z q:'}v( Z a;i;0; uhﬁj P
TeTh 3,j=1

n n
+Zai0 (0; )" + Zaoj u (9; v") + agouv")

Z Z wk,T( Z Clijai uhaj vh (679)

TET" Py, r €T 3,j=1

+Za,~0 (0 uh)vh + Zaoj ul (05 ’Uh) + aoouh’l}h)(Pj,T), and

&g‘(uh,vh) = (/nguh, ’Uhjh = Z qr}(( Z —ai]@i 6]' uh

TeTh i,j=1

—}—Za,o (0 uh —|—Z —0; (agj u —}—aoouh)vh)

n

Z Z wk,T(( Z —aijaz- 6j ’Lbh (6.80)

TeTh Py, €T i,j=1

+Za,0 (9; ul +Z 0; (ag; u +aoouh)vh))(Pj,T)-

Now we are able to define the weak and strong approximate solutions. De-
termine G s.t.

a"(ug, ") = f* (") and @"(ug,o") = f*(o") V" €V (6.81)

The inverse estimate (2.44) for the piecewise polynomial v of degree
< m+ 7 yields with n > 2

1™ 15s ) S CHIHT 20 fa gy for 1< j <m 47 (6.82)

We use it to estimate, e.g.,
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1) = o) = | /Q fohda — " (fo")
by [l fvllwe (ry < [1fllwe (1) - ||Uh||W£in{m+f,k}(T)

<Cht ) £ llwz, () 10" | ymintm a3y DY (6.75)
TeTh

< ChY 1 llwe () - 10" ymincnsris g (6.83)
by Za,b, S ZaiZbi for ai,bi 2 0vi

< CH\|flfyn (g - ™ PRI 2 R B ) by (6.82)
< Chl_min{m”’k}H_"ﬂ||f||llfvge°(9) N[0 11 -
+1—n/2—min{m+ 7, k} > 0 diskutieren, insbesondere so, dass quadratur-
formel = integral fuer FEe

Condition 6.4 Let 2 and the FEs satisfy Condition 6.1. We choose A, As, a(-,-),
as(+,*), f(-), By and the quadrature approzimations A", Al ah(-,.), ah(-,-), f*(-)
as in (6.2), (6.3), and (6.5), (6.78), (6.79), (6.80).Let the estimates (6.75),
(6.76), (6.77) for quadrature errors be satisfied, with £,k defined there. The
functions u,ug, f,aij, ..., have to be chosen smooth enough to allow function
evaluations. Hence, see (6.72) above, we always require W (£2) C C(12), e.g.
form >1, mp>n.

Theorem 6.5.2. Under the Condition 6.4 let, for Dirichlet boundary con-
ditions or natural boundary conditions as in (6.2), the £ — 2(min{m + 7,k +
1} —1+n/2) >0, 7 > -1, see (2.34). Then a Up-coercive a(-,-) implies,
for Ul = VI, again a UJ}-coercive a"(-,-). For U} # VI, the uniform dis-
crete inf-sup— condition is valid for @"(-,-). This implies the stability of the
corresponding AP

If V,f’ Z Vy and V,f ¢ V the violated boundary and interior boundary error
terms still guarantee the inf-sup— condition or stability for the corresponding
a(-,-), ab(-,-), at(-,-), or the stability of the Ah, Ah.

These results, see Theorem 6.1.2, remain correct for the approximations
ah(-,-), of the strong bilinear forms, as(-,-), a®(-,-), introduced in Chapter
4. This statement requires the condition that the quadrature approximations
and enough points on every edge, e, have been chosen to guarantee quadrature
errors and differences in (6.8) vanishing with h.

Proof (6.77) yields, with ¢ := min{m + 7, k + 1},
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| ah(uh, o) — @b (uh, o)|
n n
=/ X (fT( > aij0; utd; v + 37 aio (0; ut)v"
TeTh i,j=1 i=1
n
+ 3 aoj u (85 v") + agou’vdz)
J:l n . . . o
—QT( > a0 w0 v + > ap (0; uM)v (6.84)
i,j=1 i=1
n
+ 3 agj ul (8; v") + aoouhvhdx))|
i=1

n
< Ch*max |lagllwe (o) 2 lullwe (1) 10" lwe (1)
83=0 TETH

n
< O e lassllw o - 1y

ik
2@V lwg (2)-
For a corresponding estimate for the strong bilinear forms, we would find

| al(uh, o) — @h(uh, oh)|
n
< Cht zn}i}é”aijllwgo(ﬂ) luth
e

hlh 6.85
g (1 (6.85)

W& H(2)
We employ (6.82) for u”,v" and find, for j = 0,0 + 1,0 — 1,

|ah(uh,vh) _ &h(uh,vh)| < Ch£—2(0—1+n/2)

fr;é’é ||aij||W;~;(n) : ||Uh||?{1(9)||vh||?{1(g)- (6.86)

and

|ag(uh,1}h) _ &g(uh7vh)| < Ch£72(071+n/2)

n
?}i’g ||aij||W§°(9) : ||uh||}ﬁ2(9)||vh||%2(9)- (6.87)

As in Theorem 6.1.1 and with the estimates for |a”(u”,v") — a”(u®, v")| this
shows the claim.

If VI C Vs and V! C V should be violated, the vanishing boundary and
interior boundary error terms again yield convergence. d
We find, see Lemma 5.1.4,

Theorem 6.5.3. Under the Condition 6.4 assume conforming FE-spaces
U, VI. Both, the classical and the variational discretization errors vanish
for a(-,-) with uw € H'(2) and appropriate ¢, k.

With h -independent C = Clp, p p,y), the classical and variational dis-
cretization error can be estimated by

| AP TPy — Q' Aul| -1 () < CR™1 /2 EE}S lai;ll Lo (@) - llullwn(o2f6-88)

and
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|a" (ug — uo, v")]

sup T3 and (6.89)
0£vheVh llv ”Hl(g)
h h ~h h h(,h Fh(,h
a™(ugp,v") —a"(ug,v ") — (v
N P o AP Vi i B
0#£vheVp [|v ”}p(g) 0#£vheVp [lv ||H1(9)

S C(h€+1—n/2—min{m+ﬂk+1} I’Ilagc ||az]||W"’ @) " ||u0||W’“+1(Q)
i,j=0m oo o

_|_h1f+1771/2—min{m+‘r,k}”f”W_;co(Q))7
based upon (6.76) and upon (6.77), with consistency of order m—1—n/2 >0
and L+ 1—n/2—min{m + 7,k + 1} > 0, resp. The regularity conditions for
aij,u, f are indicated by the norms, e.g., ||ullwm(a)-

If VI C Vo and VI C V should be violated, we have to add the boundary
and interior boundary error terms as discussed in the last Sections.

Remark 6.5.4. 1)The first and second line in (6.89) emphazise the consistency
and quadrature error, resp.
2)The estimate in (6.89) remains correct if ug, [[uolyyx+1 () are replaced

B ||,k . h
by ug, ||u0||W£in{m+1,k+1}(m or if ug and u{ are replaced by any u € U, and

the discrete solution u” of A"ul = Q" Au, resp.

3) The estimates in (6.88) have to be compared with the estimates in
(6.89) and with ||I"u — u||’}{1(9) = O(hm_1)||u||’;vgg(m < O(hm—1-7/2). For
small enough h we have lost h~"/? compared to the optimal possible result.
Obviously the loss of h~™/2 is due to the fact, that the estimate (6.76) requires
llwl| o (7 instead of ||v"|| g1 (7) required in (6.88). Optimal results could be
obtained, by combining ||I"u — u||} ) With the estimates in (6.88), (6.89)
under the following very strong condition: Choose quadrature formulas (6.75)
with high accuracy £ s.t. | — (min{m + 7,k +1} —1+n/2) >m — 1.

Proof To determine the classical consistency error we use the above (6.84)
for FEs of local degree, m —1 < degree < m + 7. It implies with (2.35),
(2.44), and by Notation 4.1, (4.109), (6.76) as in (6.83) for V! C V, and
(6.82) for j =1
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- o “h
|<AhIh —Q "Au, ’Uh>|=

= | Z qT(Z aij0; (I"u —u)d; v +Za10 (0 (I"u— u))o"

TeTh i,j=1 i=1
+ Z agj (I"u —u) (85 v™) + ago(I"u — u)vhdw) | (6.90)
j=1
< C meas (2) max||a,]||L () Z ||Ihu—u||W1 (T)||1; lw (1)
TeTh
< Cf;%\:?g laijll L) - 11 = ullfys (o) 10" 151 (o)

—1— P n
< ot "/Zgr;gégllaijlle(m-IIUII’JVg(Q)IIthI?p(Q),

hence (6.88).

To obtain (6.89) we use (6.84) and replace in (6.84) the u" and ||uh||Wm;n{m+,,k+1}(T)
by ug and ||u0||W§o+1(T), resp. This yields, with the inverse estimate (6.82) for
"r

j = min{m + 7,k + 1}, applied only to |jv mintmdr 41} o))

|a" (ug,v") —a"(ug,v")| (6.91)

< Che max ||azJ||W’c (2) - ||U0||Wk+1(g)||”h||gvmin{m+r,k+1}(9)

l+1—n/2— +7,k+1} » h(|h
< ORI 2tk ) b i ) - ol o 10" s -

The f" contribution is estimated in (6.83)
£ @") = FHOM) < CRAIF e ) - 10" 1 vt
< hHl_n/Z_min{erT’k}||f||’13V§°(Q) : ||Uh||?11(n) (6.92)

Combining both estimates yields the second line in (6.89). To prove the first
line in (6.89), we combine (6.84), the second line in (6.89) and (6.92):

(vh)—a”(uo, ")
— a(u, v") + (a” (uo,v") — @" (uo, v"))|

(W) = F@M)] + 1(a" (uo, v") = @ (uo,v™)))|

@ (ug — uo,v )| =

hence again (6.89). O

Theorem 6.5.5. Under the Condition 6.4 assume conforming FE-spaces
U, VI. Both, the classical and the variational discretization errors vanish
for u € H2(02) and appropriate {,k.

Again, the classical discretization error can be estimated by
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|42 u = Q" Agul| g1 () < CR™ 2772 max flais 2. (@) - lullivz (o46:93)

and
~h(, h h
a(ug —
0#£vh eV llv ”Hl(g)
|a" (ug, v") = @" (ug, v")| (") = f (")
sup A + sup iR
0£vheV] [|v ||H1(Q) 0#£vh eV} [|v ||H1(Q)

{—n/2—mi +7,k 7 .. . h
SC(h n/2=min{m+r }g;i}é”au”W;"o(Q) ||u0||W§o+2(.Q)

+h£—n/2—min{m+‘r,k} ||f||W°’“O(Q))7
based upon (6.76) and (6.77) with consistency of order m —2—n/2 > 0 and
£ —n/2 —min{m + 7,k} > 0, resp.

If Vg‘ C Vy and V,ﬁ‘ C V should be violated, we have to add the boundary

and interior boundary error terms as discussed in the last Sections.

Proof : To discuss the strong terms we modify (6.90) and find
- < <h
|(AbTMy — Q" Agu, v")" | (6.95)
n h h m
< CZI,T;%H%‘HLOO(Q) A = ulliy (o) v 1L ()

92 n
< Chm? ”/2gr;g>(§llaijlle(m-IIUII’V‘V;g(Q)IlthI'iz(g),

hence (6.93). Similarly, we find for the strong bilinear forms, see (6.91),
|ag (uo, v") — & (uo, v")| (6.96)

L._n h hih
<Ch ZI,Y;%HGUHWQ(Q) : ||U0||W§°+2(Q)||U ||Wmin{m+r,k}(9)

t—n/2—min{m+7.k} 11 : N "I
< Otk sl s, (o) - woll e g 0" 132 s

To prove (6.94), we combine (6.84), (6.89) and (6.92):
|3 (ug — uo, v™)| < [ (") = F")] +|(as(uo, v*) = @ (uo, v™))|
hence again (6.94) with the obvious modification of (6.92). O

Theorem 6.5.6. Let a(-,-) be coercive and U, VI' be conform and Condi-
tion 6.4 be satisfied. Then the approzimate weak and strong solutions ul of
the discrete equations (6.81), see Theorems 6.5.2, 6.5.3 6.5.5 converge to the

weak and strong solutions according to



6.6 Collocation Methods for FE and Spectral Methods 127

lluo — ug |l () (6.97)
< Ohm-1mn/2 ?;é)é”ainLm(n) Nuollwm(2), or

< C(hl+lfn/27min{m+‘r,k+l} max llais || we (2) ||U0||Wk+1(g)
i,j= n oo oo

+he+1_n/2_min{m+7’k}||f||W;cO(Q)), for the weak and

< CpmoEn/? ZH;.T?LLZ% Nais|l Lo (2) - luollfym (s oF

£—n/2—min{m+7,k} T .. ) h
SC(h " e {3%||au||wgo(n) ||u0||Wc’,°o+2(Q)

+RE2mmdmAT R £l () for the strong forms.

The two estimates for the weak and the strong errors originate by comparing
with the quadrature errors in (6.76) or (6.77). Again conditions for the func-
tions and exponents of h to guarantee convergence are shown in the formulas.
If VP CVy and VI C V should be violated, we have to add the boundary and
interior boundary error terms as discussed in the last Sections.

These results, see Theorem 6.1.2, remain correct for the approximate
strong bilinear forms, a"(-,-). This statement requires the condition that,
as above, the quadrature formulas are good enough and that enough points on
every edge, e, have been chosen to guarantee the differences in (6.3) to van-

ish with h. In the convergence result for the strong solutions (for a®(-,-)) the
(6.40) has to be modified as ||uf — uollz2(@) < CH™*~"/? max|laijllL.(a) -
,7=

||U0||gvcvg(9)-

6.6 Collocation Methods for FE and Spectral Methods

We have discussed in Section 4.1 the transition from an approximate varia-
tional method via quadrature formulas to collocation. This collocation is al-
ways based on the strong bilinear form and its approximations. This requires
two steps: Testing the weak bilinear form @"(-,-) w.r.t. the approximate pair-

ing < -, -3" has to be transformed into testing the strong bilinear form a” (-, -)

w.r.t. the approximate L2({2) inner product (-, -) r2(e)- According to Remark
6.5.1 the collocation and interpolation points have to be identical. We want
to generalize this approach to FEMs and spectral methods We start with

6.6.1 Collocation methods for FEs

Instead of the weak form, see (6.2), (6.2), (6.3), (6.4), we study the strong
bilinear form. In contrast to Section 6.5 we extend our studies to non con-
forming FEs as well.

In Section 4.1 we had already indicated the equivalence of the strong
quadrature and the collocation formulation (4.52) and (4.53). We refer to
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Theorem 6.5.2: It shows the simultaneous stability of A* and A*, A" for U}
-coercive a(-, -) under the Condition 6.4 and for appropriate k, £, m, 7. Under
the condition (6.98), the combination with the following interpolation basis
th immediately yields the equivalent collocation equations as in Section 4.1
and the stability.

We have to choose specific FE spaces V,f‘: We assume the N in Definition
2.2.2 consists of exactly those, say d, points used in the collocation equa-
tions (6.103), below. Hence, any v" € WV} is uniquely determined by the
v"(P;), VPj € T, VT € T". Thus, with the Dirac delta functions §(P;),
the N = {§(P;)): Y P, €T}, VT € T". So, the following condition is ap-
propriate for conforming and nonconforming cases, see Definition 2.2.2 and
(2.31).

VT € T" T = Fr(K) is affine equivalent to K, and
(K, P, N)is a FE with AN defined by (6.98)
Nr ={0(P;) :VP; € K in (6.103)} is a unisolvent basis for P’.
This property has to be checked for a given set of collocation points. We
have to guarantee that in fact a P,Py,—1 C P C Pp4r, see (2.34), exists, s.t.

(K,P,N) unisolvently defines a FE. Then, due to the required unisolvense
of (K, P, N), see (2.31), and by (6.98), the interpolation basis

“?,T € Vy' with ,U_;L,T €V} and U?,T(Pi) = 6;,;01,1

Vi, j=1,...,d, VI,T' € T" (6.99)
is uniquely determined.

Our next job is the definition of a quadrature formula and the correspond-
ing error estimate of the form (6.77). We find

Proposition 6.6.1. Under the conditions of Theorem 2.5.1, specifically (2.34)
and (6.98), let I" be the FE-interpolation operator defined for (K, P, N').
Then

hﬂ):z hw:: hﬂ)x.’E .
') = 3 dhw) = [ T (6.100)

TeTh

is well defined for w € C(£2). The quadrature error for (6.100) is estimated

| / 2)do = ¢"(w)| < C (' meas 2)Y/1]jw — I'w|t, g

for1<p<oo, 1/p+1/g=1 (6.101)
< C ( meas 2)'/1 R [wllwm (), for w € Wp(£2).

A combination with Theorem 2.5.1 shows that (6.77) is satisfied as well.
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In fact, the FE with all V; 7 = 1 has a bounded integral.
We recall the a(-,-), as(-,-), A, As in (6.2) with

Dirichlet and natural boundary conditions, realized as
Uy =V = Hy(2) and Uy = {u € H*(2) : Byulan = 0},
Vo=V = H'(0),resp. (6.102)

The a"(-,-), at(-,-), A", A" are explicitly formulated in (6.78) - (6.81). In
short form and with the above quadrature approximation we obtain

al(uh, vh) = Z /Asuhvhd:z: = (fhoh) ¥V ot eV
rer’T
apwh o)y = 3" (D wi(Aaut) (P (Fy) (6.103)
TeTh Pj=PF;re€T
S (Al ot = (110" Y ot e V)
TeTh

Then we determine the (strong) discrete solution uf € U} from

- ~h ~h

al(ul, o) = (f",0") or = (f,0") V " eV (6.104)
As in Section 4.1 we test the strong variational bilinear form with the above
interpolation basis UZT. Under the condition (6.98), we still have the same
equivalence as in (4.53), equivalent to the collocation method.

at(ul, ") = (f,vhjh =0V eV —

s

(Asuy — f)(P)) =0V P, eTVTeT". (6.105)

We want to recall four results, essentially from Section 6.5, see Theorems
6.5.2 and 6.5.6. The coercivity of a(-,-) implies the discrete inf-sup—condition
for a’(-,-) and @"(-,-). This yields the stability for the a”(-,-) and a”(-,-) and
for the equivalent collocation formulation in (6.105). The 4} computed from
the weak and the strong discrete variational problems are identical. And the
consistency and convergence of the collocation and the strong variational ap-
proach are essentially the same, except for variational crimes. So we have to
discuss the implications of variational crimes, excluded in the last Section 6.5.

Now, we study the implications of variational crimes. Similarly to the
transitions from (4.2) (4.3) and (4.11) to (4.13) and (4.16) to (4.29) we obtain
first the analogous of (4.46) in the form
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~h ~ _
(f,0")" = a"(ug,v") = a5 (ug,v")
Yo" € V! for conforming FEs and (6.106)
r" _ ~hy B Ry _ xh(, b R ug
(fav) a(UOa’U): s(anv)+ a,,
an ov
¥ v" € V! for violated boundary conditions and (6.107)
ch 5 Ooul
(" = o) = a0t + Y [ S
ecTh € €
Y v" € V! for violated continuity, resp. (6.108)
Similarly to (4.42) and corresponding to (4.13), (4.29), (4.43), (4.44),

(f , oM L2(2), the error for the strong exact and discrete solution and for
conforming methods has the form

vPds

&Z(UO - ugavh) = Z Z wj((Asu0 )vh)(ﬂ) - (f ) Uhjh
TeTh P;eT
- ug — f)ol)de L
T;rh/T((As 0 = Dot)dr +(f, ")
= ((F, ) = (F, o) (6.109)

+(6’2(u07 vh) - ag(“o: Uh)) -

This requires smooth enough uo, f to allow the evaluation of A, uo(P;), f(P;).
The estimate is again based on the quadrature errors in (2.

Whenever a weak against a strong bilinear form has to be estimated,

h h
@ (uo, v")—al (ug, v"), we have to add 0 and [, 24 vhds and ¥, cn [, g—ﬁg[vh]ds
for conforming FEs and violated boundary conditions and violated continu-

ity, resp.

We formulate the final result for collocation methods, in fact a Corollary
of the above results, as

Theorem 6.6.2. Let a(-,-) be coercive, U, VI be conforming, (6.98) be
valid and the quadrature formula be defined as in (6.76). Then the bilinear
forms a(;-),as(;), al(;), ak(;-) satisfy e discrete inf-sup—condition. Hence
unique strong ezact and collocation solutions ug and ul, resp., exist. The
error between these solutions is estimated as

lluo — ugllm(a) (6.110)

< Chm—2—n/2 n .. . h o
< max [laijllL..(2) - [ullivg (o), or

< O(pm=n/2=min{mtrm} p A1
<C(h max [laisllwz o) - luollyym+ g

+hm—n/2—min{m+7',m}”f”W;g(Q)) (6.111)
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Again the conditions for the functions and exponents of h to guarantee con-
vergence are shown in the formulas.

Now, we compare the exact weak and (strong) collocation solutions ug and
ul, resp. for conforming FEs and violated boundary conditions and violated
continuity, resp. For conforming FEs and violated boundary conditions we
have to add 0 and Chmi“{”’m_z}||uo||me{m,zmI+1_,,}(9), for violated conti-

nuity has to be modified as Chmi“{“"m_Z}||u0||me{m,uf+2}(Q), resp. These [
and ' are defined in (6.84) and (??)

6.6.2 Variation Methods and Collocation for Spectral Methods

Compared to collocation for FEs the collocations for spectral methods are,
theoretically, simpler for two reasons. There are no variational crimes ex-
cept quadrature approximations, so there is no need for Ay, and the quadra-
ture approximations for inner products for the terms a(-, -) usually coincide
with the exact integrals. We give a short review and extension of Subsec-
tion 4.2.2. Spectral-, pseudo-spectral-, collocation-methods in aliased and
de-aliased forms represent different types of spectral methods. The power
of these methods is observable only for smooth enough situations and sim-
ple domains. They are realized with trigonometric (Fourier) and Legendre
or Chebyshev polynomial basis functions,.. The polynomials are indicated by
K =F, K =L, K = C below. The corresponding quadrature formulas use
equidistant and Gauss-, Gauss-Radau- or Gauss-Lobatto collocation points,
resp. Similar to Subsection 6.6.1 we want to relate a corresponding colloca-
tion method to the above approximations via quadrature. First we recall that
spectral elements satisfy (Dirichlet or natural) boundary conditions exactly.
So we apply (6.2) to v" € V} starting with v" € V] C V), satisfying Dirichlet
boundary conditions. Since boundary conditions and continuity are satisfied
we do have

(fa Uh) = a(ugavh) = as(u(’)lavh) (6112)

~h _ -
(f,0")" = a"(ug,v") = @y (ug,v")

Y v" € VI for our conforming spectral methods.

This implies that the strong and weak spectral approximation are identical.
We obtain, with the weight function w and the quadrature approximation
for the integral

a(u® ") = / (A, uP)olde = ag(ul, ") & @l (uh,vh) = (4, uh,vhjz
o)
= (AL u" oM, = D (At (yy)v (v:)w; (6.113)
jeJ¥

Y uh € Uy smooth enough, or u® e U vV " € V&,
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with vh(y;) the conjugate complex of v"(y;). Often this =~ can be replaced
by =. In fact, for spectral methods we often have much stronger results than
for Feds. Essentially Theorems 6.5.6 and 6.5.2 remain correct for spectral
methods however allow a much stronger version. This is due to the fact, that
compare (4.89), (4.94),

(uh,v")y = (W, oM for p=—1,0,1 V wv" €U or € V",
(W, 0")y = (WP, o")8 (1 + OOk P o ()))
for p=2, V vt oh €U or € V6.114)

We again define, e.g., for Dirichlet boundary conditions, an interpolation
basis

ul € Uf by ul(y;) =0 VjeIV,y; €00,
ul(y))=06; ¥ €IV,y; ¢80, (6.115)

and similarly v? € V*. Then, due to (6.114)

~h
(uh uh)w = (u;lau?)w = 61] for p= _170717

i Uj
=& + (9(me+”“(0)||u?u?||H$(Q)). for p=2,

So again the stability results in Theorem 6.6.2 remain valid. the convergence
results have to be updated.

To really formulate the collocation equations, we choose as for FEs and as
indicated above the interpolation basis for V! as in (6.115). Then for (6.113)
with Dirichlet conditions we have to determine

ug € U s.t. (Asug)(ye) = fly) ¥ k € I,y ¢ 802
and ul(yr) =0V k € IV, gy, € 002 (6.116)

These represent the well known collocation methods. If instead of Dirichlet
the natural or Neumann conditions are imposed, the collocation conditions in
(6.116) are unchanged. However, the above uf (y,) = 0 have to be replaced by
the corresponding, e.g., (Qul/Ov)(yx) = 0V k € IV, y;, € 802 for Neumann
conditions.

Theorem 6.6.3. Choose A, a(-,-),a,(-,-)B, and A" = A, A" a,(-,-) at(-,-)
as in (6.2), and (6.113), resp., and the quadrature formulas as in (4.89),
(6.113). Then for a Uy coercive a(-,-) the a(-,-),as(-,-),a"(-,-),a(-,-) are Uy
coercive again or satisfy, for U # V}, the discrete inf-sup— conditions.

Proof The coercivity claims are immediate consequences of (4.89) and the

following remarks, implying a”"(u”,v") = (4 u", vhjw = (A" uh, vhjz =
a(uh,vh)

Vuh e Ul, vh € V! for p=—1,0,1 and for p = 2 if Au does not contain the
term agou. Otherwise (6.114) or the averaged Taylor polynomials have to be
used to show the discrete coercivity. O
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Theorem 6.6.4. Foru € H'(2)a(-,),as(-,), and the variational discretiza-
tion errors for a(-,-) and as(-,-) are zero . For w € HT(2) the classical
and variational consistency errors for u and all spectral methods considered
here, vanish of the order m — 1k (2) — px, with £ = 2, 1p(£) = £, 1c(f) =
20, 1p,(£) =20+ n/2, see (4.93), and px = pr(l), pr =2, po = pr =4,
see(4.95) The classical discretization error can be estimated, with N indepen-
dent C = Cmyn,p), by

||f~1hIhu _ thAqu:’ < CN*m+LK(2)+p/K

?;.né:}é”ainLm(Q) Null g () 10" | 213 (2) - (6.117)

This indicates the exponentially good consistency for m — co. Let ug and ul
be an exact and the approrimate solution defined by

aug,v) = f(v) YV v € Vy and @ (ull,v") = f*(v") VP e VP,

or the strong or collocation analogues, see (6.113), (6.116).
Finally, let a"(ug,v") and @"(ug,v") be defined for ug and V vh € Vi
Then we find for the variational consistency errors with C' independent of h,

sl h h
a"(ug — ug,v
sup |(0h—h0’)| and (6.118)
0£vheV] llo™ 15,
|a” (uo, v") — @ (uo, v™)| | (") = £ (M)
sup AT + sup AT
0vheV] 0" {1y, R llo" {1y

< CN-mtex(2)+ex m?j,xnaz'j”Lm(Q) : ||u||Hm(Q)
i,j=0 ¥

For a Uy, coercive a(.,.) we obtain the estimate
llugy — wollf (@) < CNTm e Bhtux ?}E’g llaij|| Lo (2) - ol mm(2)16.119)

here ul is any of the weak or strong or quadrature approzimate or collocation

spectral solutions.
Qho b phi" ho ok h
For spectral methods often (A"u", v"), = (Au", v")y and f(v") =
i (v") for simple enough f are valid. Then we obtain the improved estimate

llug — uollfp () < CN—mHx) {I;fg llaijll Lo () - lluollmm (). (6.120)

Instead of the condition f(v") = f"(v") we can replace the f(Pjr) in the

collocation equations by sufficiently good approzimations (f, v;-’,T)w.

Proof We use a modification of (6.90) based on Notation 4.1, the quadrature
formula (6.113) and the Cauchy-Schwarz inequality instead of (6.76). With



134 6. Consistency and Coercivity for Variational Crimes

the notations and results in Theorem 4.2.1 we estimate for v € H7'({2), see
(6.113)

| < Ahhy — thAu, Uth'va = |(/1hIhu — thAu, vh)m
< Cﬂé’é laijllL (@) - 1Ew = ullaz @) 10" |22 (2) (6.121)
< ON-mHE) {I;%gg il 2o () - Nl @) ll0" |22, (2) (6.122)

< ON—mHu () +ux 1111175:35 lNlaijllzo (@) - 1wl mm ) 10" | (2)-

The exponents ¢k (2) are caused by the interpolation errors, see (4.94). The
exponents pux are due to inverse estimates for spectral elements, see (4.94),
([23]. Since in the final error estimates this result has to be combined with
IIku — ullg (@) = O(N—™FHx@) < O(N-m+x@+hx) for large enough
N we have lost O(N#x) compared to the optimal result. With (6.113)this
implies immediately

|a(u,uh) - flh(u,vh)| < N~k )tk

sz;?gg laisll Lo (@) - Nl ) ll0™ | m (2) (6.123)
Similarly, we find
[F (") = A (M) < Cllju — ullzz (o) 10" |22 (o) (6.124)

< CN=™F Oyl g ) [[0"]| 22 (2)

< ON—mHex O tux ull (@) 10" |2 (2)
The last estimate follows as above:
" (ug — uo, o™)| < [FH(0") = F")] + |(a" (uo, ") — @"(uo, v™))|

This is the above claim in (6.118). The estimate (6.119) is obtained by com-
bining (6.118) and Theorem (6.6.3).

For spectral methods often (A" Ihu, v")! = (AI*u, v"), and f(v*) =
fh(v") for simple enough f are valid. This implies px (1) = 0. O

6.7 Consistency for Nonlinear Equations

n n n
B, u:= Z v;ai;0; u + Zl/jaoj U. — Z@, (aoju) (6.125)
j=1 j=1

i,j=1

We do not want do burden the presentation with the full machinery. Instead
we modify (4.96), and discuss the following
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Example 6.1 of a nonlinear model problem with Dirichlet boundary condi-
tions and A, of the form in (3.26)

Gy : HX(2) N HY(2) = L2(2),Gs(u) == Ayu+ A\R(u)  (6.126)
= Asu + AR (u, — Z 0; (agju),/ u), e.g.,
=1 20
= Agu+ Mu® —
j=

8; (o) (u + / u) +g).

1 §20

Similarly we can discuss natural boundary conditions.

We develop Gs(ug + u), for a fixed ug into terms, which are independent of
u and linear or quadratic in u. We obtain

Gs(ug +u) = Gs(ug) + (6.127)

n n

+Asu + A(2uou — (u + /Qu) Zaj (aojuo) + (uo + /Q ug) Zaj (agju))
6j (aoju)).

1

=1

+A(u? - (u +/ )
Q

n

J

Now we test G's(ug + u) = 0 in the strong (G,u,v)1>(o) form and relate it
to the G(ug + u) testing in the weak form < Gu,v >pH-1(0)xH! (2)- With the
notations

Ay = Gl (ug)u == Ay

n

u
+A(2uou — (u + /ﬂu) Zaj (agjuo) — (uo + /Q ug) Z 9; (aoju)),

G 2 0 [ 030, )

we have to test

2
Gi(uo +u) = Gi(uo) + Gl(uo)u + G (uo) 5 with

Gs(ug) € L*(2), and A%® = G (ug)u : H*(2) N Hy(2) — L*(2),
A% = G'(ug)u : HY(2) - H ().

So testing in the strong or weak form yields

(GS(UO),'U)LZ(Q) =< Gs(uo),v >H-1(Q)xH () Yv € Hl(.Q)
(G (wo)u,v) p2(0) = (A57u,v)12(2) =< AU, v >H-1(Q)xH(Q)

—/ (B&u)v ds, Yv € H(12). (6.128)
50
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Here A°® and B¢® indicate the weak linear operator and the natural boundary
conditions generated by AS”.

Replacing in (6.128) the u,v by u" € U, v € V! yields the consistency
errors familiar from Sections 6.1 -6.6.

Finally, we have to test G” (ug)u?/2. In fact, we have changed the original
form (4.96) into (6.126) to guarantee a nonstandard consistency error, which
does not immediately fit to the earlier Sections 6.1 -6.6. The only interesting
term is the

n n
—/ uZa,- (aoju) ot dr = / Zaoj U 8j(uvh) da:—/ w"Byu ds  with
e 4 (o Rt o0
n
—/ wByu ds := —/ Zuvh vj agj u | ds or
60 52 \ i

n
Bu = Zl/j ag; u
Again we have to estimate, as in subsections 6.1-6.6 either

/ uv® Byu ds or Z /uvh]Bnlu ds (6.129)
80

e€Th

for smooth enough u and v"* € V}'. For the estimates in subsections 6.1 -6.3
we had studied a B,u. In the proof we had only used estimates of the form

[Batllwy(r) < Cllullygss o) (6:130)

since B, was a first order differential operator. Since our actual Byu is only
of the order zero we can replace (6.130) by

| Buvllws(ry < Cllullwe(r),

At the other side, for smooth enough u we can still use the other complemen-
tary parts of these proof : They require uv® = 0 in enough points on 92 or
on e and smooth enough uv”.

This strategy always works for nonlinear problems, unless — 2?21 0; (agju)
appears in to high powers. E.g., if we replace u — Z;‘Zl 0; (aoju) above by
u(—= 327, 9 (aoju))* and test with v we still find

/vu ZBJ apju))ide = — /28 (agjuv Zaj ag;u) —/ wv Bpju ds
j=1 7j=1 g

(o}

with B,u a differential operator of zero order. However if we consider
u(— Z?:l 9; (ag;ju))? this approach fails and other techniques have to be
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developed.
Whenever these techniques do apply, we have estimates for the consistency
error of the same magnitude as for the linear problems considered above. We
summarize:

Theorem 6.7.1. Let G5 : H2(2)NH{(2) — L%(12) be a nonlinear operator,
obtained as an appropriate generalization of (6.126), s.t. derivatives of u do
not occur in powers greater than 2. Then the consistency errors in subsections
(6.1)-(6.6) remain valid with increased constants.

If G (up) indicates a Uy coercive bilinear form, and ug and ul are the ezact
and discrete solution, G4(ug) =0 and G"(ul) = 0 then

[|uo — ug||’}{1(9) < C{ h’infh [|uo — hh||'}{1(9) + consistency error} .
uh €Uy

(6.133)

We do not want to repeat all the different formulas for the consistency errors
in the last subsections. One simply has to combine, e.g. violated continuity
with Theorem (6.3.1).






7. Stability for General Elliptic Operators and
Variational Crimes

Based on the general results for discretization methods in Chapter 4 we have
formulated the generalized Strang Lemmas in Chapter 5 and estimated the
consistency errors for the different cases in Chapter 6. Additionally we have
shown the coercivity or inf-sup— condition, hence the stability of the discrete
operators, only for coercive original bilinear forms. So, we still have to prove
stability under the influence of variational crimes and for general elliptic
operators. We achieve this by the fact that general elliptic bilinear forms
are obtained as compact perturbations of coercive original bilinear forms.
Further extensions to Navier-Stokes equations and to bifurcation numerics
are studied in [15, 16]. In Chapter 6 we have determined the consistency
errors independent of the stability. Hence, the general (linear and nonlinear)
stability in this Chapter allows a combination with the consistency results in
Chapters 4 , particularly Section 4.4, - 6 to yield the desired convergence. We
do not repeat all the detailed consistency conditions and results. Rather we
formulate a final result, Theorem 7.3.1 indicating the convergence results.

We have mentioned at the beginning of Chapter 4 that the generalization
to elliptic operators of order 2m works well in Chapters 2- 5 and it will
work well in this Chapter 7 again. However, the construction of the anti
crime operator in Chapter 2, the consistency estimates, the U — coercivity
and inf-sup— condition w.r.t 4*, V" for variational crimes in Chapter 6 are
based on specific 2m = 2— techniques. So, only these parts would have to be
worked out for the general case 2m to generalize the whole results to elliptic
operators of order 2m.

We prove the uniform inf — sup — condition, allowing variational crimes,
for bounded bilinear forms a(-,-) inducing an elliptic invertible operator A.
This implies, by Theorem 2.1.7, the stability of the induced linear operators
Al Again, we use the general notations in Section 4.3.

The U} —coercivity of a”(-,-) or the inf-sup— condition for U} # VI for
a Up—coercive a(-,-) is proved already in Chapter 6. We generalized this
in several steps to compact perturbations of the linear operator A, their
approximation perturbations, e.g., by quadrature rules. This even applies to
their bordered forms as needed in bifurcation numerics, [15, 16].
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7.1 General Definitions and Results

We start citing well known results and definitions needed in our context.

The two following Theorems give known and well applicable criteria for
stability. We discuss the relation between stability of the nonlinear and lin-
ear and a perturbed nonlinear problem. For the general case studied in [57]
we need compatible approximations: The projection operators Q" Q" in
(4.109) and the E" introduced in Chapter 2.6, have the properties:

Definition ,7 A.1. Comp,atiblglapproximatigns: Let for all h € H the P" :
U= UQr: V' - Vi Q" . VnC() - Vh and E" : U" - U,
be (uniformly) bounded linear approzimation and extension operators, resp.,
with

sup || Py ey < 00, lim |ju — PPul|ly =0V u € U,

h h—0

sup [|Q *|lyrn .y < 00, lim ||[f = Q™" flly =0V f eV, (7.1)
h h—0

sup [|Q "l yinoqmy <00, Im||f —Q"flly =0V f eV NC(1),

h h—0

sup || E®||yeun < 00, ’lbirr%) [[u? — Ehu||h =0 Vut e (7.2)
h —

Let the properties in this and in Definition 4.3.1 be satisfied. Then we call
U", V" a compatible approximation.

Remark 7.1.2. The following Theorem 7.1.3 and the compatibility in Defi-
nition 7.1.1 are satisfied for our FE and spectral approximations, E" only
for U = HY(2). The limpo||[u® — E*ub|l, = 0 V w® € U" implies
limp 0 ||u — E"Phu|lyy = 0 V u € U. Nevertheless, we present the essen-
tial proof for this more general case.

We only need these compatible approximations for the proof of stability
for compact perturbations of monotone operators. Zeidler [67, 68] requires
limy o ||lu — E"Phu|lyy = 0 V u € U. The approximation property (7.1)
implies, necessary for the Stetter approach,

lim |2 fulll = |lully Yu €U, Um [|Q"fllv = |Ifl YV fEV, (7.3)
—0 h—0

Jim Q™" fllv = |Ifllv ¥ feV' NnC@).

=0

Now, we have, see [57] and Remark 7.1.2

Theorem 7.1.3. Let Z/l,f, V,f be admissible and compatible approximations
and let the induced dicretization G* : Ul — VI and u* € U" and r > 0

be given. Assume G" is continuous in B.(u"). Furthermore let for all v €
U N B(ul) the ((G")'(v")) ™1 exist and
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I(G™Y (W) < S uniformly for h e H. (7.4)

Then the discretization G" is stable at u" with stability bound S and stability
threshold ro = r/S.

Theorem 7.1.4. Let L{,f‘, V,? be admissible and compatible approximations.
Let the induced discretization G := G" + F" : up — VI forG =G+ F:
Uy — V,', and let a sequence u" € L{,f‘ be given. Assume there exists r, L > 0,
independent of h, s.t.
1. G" are continuous and stable in B.(u") with the stability bound S for
G",
2. F" are Lipschitz continuous in B,(u") with

IF" (ut) = F*(u3)ll}y < Llluf = u3llfy and L-S<1.

Then G is stable in ", with stability bound S /(1—LS) and stability threshold
(1— LS)r/S.

By Theorem 7.1.3 we can restrict the stability proof to linear operators
and the corresponding bilinear forms. We have reviewed the relation already
between the discrete operators and bilinear forms many times. We repeat
here for convenience the above notations:

Notation 7.1 Let a”(-,) : Ul x V} - R, f":V} > R denote a bilinear
and a linear form. Let AP denote the linear operators, induced by the above
a"(-,-), hence

< Ayt ol >=ah @l o) vuh e Z/{,?, ot e V,f’.
Typically for the variational crimes we have U} ¢ Uy or ¢ U, VI ¢
Vi or ¢ V, or allow quadrature approximations or collocation methods.
If we explicitly want to indicate the quadrature approximations, we use the

notations AP a"(-,-) instead of A" a"(-,-). This implicitly defines linear
operators

" LUy, Vo) = LU, VE) s.t., D"(A) = A"
with " (A + C) = " (A) + d"(C). (7.5)

Analogously, ®" is defined for nonlinear operators as well.

For the following discussion we have to consider the dual problem to
(4.113): For A% : V{' = U} we have to determine

vo € Vi s.t. Ay = ¢' € Uy;

the (A?)~! exists if and only if A~! exists.
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For the dual problem it is important, that the 4", VP = VA" define
corresponding dual operators, P* : Ul — UP, defined as in (4.109) or in
(4.108), e.g. Phg = g’|ugl, and Q", E or their approximations. Therefore
the situation in (4.118) implies usually a corresponding dual equation, A%y =
g € Uj,v € V{, and a dual diagram of the form

V" C VII)I A_d;hAd u[ﬁ e:cactlytﬁtEdby ub cu
QhHEg sphl l P'horP'h (7.6)
vi=0ky — U (omrlegtetty

(Ad)h, (Ad)h

Using the techniques to construct E", we can define an analogous E" as well.
Mind that 4" C U implies U " = (U")" D U’ in the sense, that any linear
functional defined on U is defined on U" as well, not vice versa. Nevertheless,
U' is infinite-, and U'" finite-dimensional.

For the case of Petrov-Galerkin methods we obtain, with V} = (V})",
satisfied for our FE and spectral approximations,

Py’ = g'lyp and (A%)'g = P" Afug = P"g, vy € Vi = (V)".(7.7)

So we have, for Petrov-Galerkin methods, a pair of corresponding discrete
equations of the form

Aruft = QM Aplypug = QM f and (A%)hug = PR AL o = Q" f (7.8)

In case of variational crimes, we have to generalize the operators and con-
sistency errors as we did for the original equation, see Notation 4.1. This is
already included in the chosen general notation of A" and a”(,-).

Definition 7.1.5. Bi-dual approximating spaces: Let the conditions in Defi-
nitions 4.3.1, 4.8.3, and 7.1.1 be satisfied as formulated for the dual situation,
hence for Z/{,I,h and V}' and let Qh,Plh or Ij"h,Ef} be the corresponding oper-
ators. We require

dist(u,U") = in{{ llu—u"||l, 50 forh—=0YVuecl, and
uhe h

dist(v, V") = inf} [[v ="}, - 0veVand ve (V)" (7.9)
,Uhe h

Then UR,V} and L{;h, Vi = (V) is called a pair of bi-dual (Petrov-
Galerkin) admissible approximating spaces. They are called admissible and
compatible if dimU}! = dimV}' and the conditions in Definition 7.1.1 are
satisfied, resp.

Remark 7.1.6. For our FE and spectral approximations, the conditions in
Definitions 4.3.1, 4.3.3, 7.1.1 and 7.1.5 are satisfied for the dual situation as
well.

The bi-duality condition is satisfied, whenever V is dense in V”. This is
correct foe the cases studied here.
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Under these assumptions we obtain an estimate for ||vg — v?||y» similar to
those for ||ug —ul||y in (3.30), in which merely dist(ug, ") has to be replaced
by dist(vg, V") in V". Variational crimes can be handled similarly.

7.2 Stability for Variational Crimes

Now, we turn to th problem to prove stability for compact perturbations of
an operator with stable discretization.

It is well known that B" is stable if and only if (B")? is stable, and for
both sequences the same stability constants can be chosen, see Criterion 7.1
below. This can more easily be verified, in particular for the special case B* =
Q'hA|uh. For the cases studied in Chapter 6 we can apply those techniques to
the dual operator as well. This shows, that for an important class of operators
Al and (AR)4 are simultaneously stable.

We have simultaneous consistency estimates as well for bi-dual approx-
imating spaces, even for variational crimes. We need the relation between
the stability of the above discrete A" and the existence of A~!. The next
Theorem shows that stability is the stronger condition. The (4")~! can only
be stable, if, here and below, the (4")"1 € L(V},Ul") and the U}, V} are
chosen as admissible approximations in the sense of Definition 4.3.1.
Theorem 7.2.1. For A € L(Up,V;) and a pair of bi-dual admissible ap-
proximations, Ubh,V,fl, see Definition 7.1.5, let A*, determined by a”(-,-), be
stable and A" and (A")? be consistent. Then A= € L(V),Uy) ezists. The
corresponding result for A" is formulated in Theorem 7.2.6.

For the proof we need as in [16] the following Criterion.

Criterion 7.1 Let Banach spaces Uy C U,V C V', and A € L(Uy, V) and
its dual A? € E(V,I,’,L{g) be given. Then the following two conditions are mu-
tually equivalent:
1. A7V e LV, Uy) & (AD7 € LUy, V)
2. There exist positive constants C1, Cs such that
a) ||Aully; > Cillully for all u € Uy and

b) [|A%" |l > Cal[" ||,y for all v € Vy.

If one of the above conditions is satisfied, we obtain
A vy =AY lypyy < min(1/C1,1/C).

Remark 7.2.2. a) Since stability requires a uniformly bounded invertability,
the above conditions have to be modified for the discrete operators in an
obvious way.

b) For our present state of proof we know the stability of the A" induced
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by a Uy coercive a(-,-). We have to observe that Theorem 7.2.1 is applicable
only to those A, for which the stability of A" is assumed.

Proof We have to show that the existence of a bounded inverse of A follows
from the stability of (A")scm. Let u € Uy and v € V,;I be given. Consider
f:=Au €V, g:= A% € U] and the corresponding discrete solutions u”, v"
of (4.115) and (7.7), respectively. The latter are uniquely determined due to
the assumed stability. One obtains the following estimates:

a1}, = 11(AM) = Q" £l = [1(4") ™ Q"™ Aul
< 1AM ™y ey 1Q Aul
< 114" sy [ Auflyr < Cl|Aullyr and
10" 1 = 11((A%) ™ PRyl = []((A%)") ™ P A
(AD) ey 1P A%
(

< 11(4") gz oy 1A%l ler < ClI A%,

— o~

<[l

The results in Chapters 5 and 6, and the pair of bi-dual, necessarily admis-
sible, approximations, yield for the simultaneously stable and consistent A"
and (A")? the convergence of u" and v" to the fixed u and v, respectively.
Consequently, we obtain with the above estimates and the continuity of the
norms:

| 4ullyr > Kllully und [|A%]jr > K|fv]]y.

Therefore Criterion 7.1 implies that A~ € L(V},U;) does exist. O

For an important class of operators, the so-called strongly monotone and
coercive and elliptic operators, depending upon the author, [68], and [42], and
[37], respectively, the stability has been verified already in Theorems 6.1.1,
6.4.1, 6.3.1 and 6.5.3. In general the existence of a bounded inverse of A is
not sufficient to ensure that the discrete A* or A" is stable, see [51]. However,
the next result allows all types of elliptic equation, bordered systems, hence
bifurcation numerics, and Navier-Stokes equations. We have presented this in
detail in [51] and we will show, that it remains valid in the case of variational
crimes as well.

Theorem 7.2.3. Let U,f‘,V,? define bi-dual admissible approrimations, with
Ul approzimating H'(2) = U. For B € L(Uy,V}), let the discrete B" (or
B’h) be stable. Furthermore, let A = B + C, with a compact perturbation C
of A, let B* and C" be consistent with B and C for smooth u, resp. Then

AP (or AM) s stable o AT € L(V],Us). (7.10)

Remark 7.2.4. We have indicated already by A" (or A") in (7.10), that the
following proof remains valid, if A" Q" are replaced by A" Q'". For our
main examples of A, B, C see Section 3.2, this consistency of B, C' (and A) has
been proved in Chapter 6 under the conditions of Theorem 7.2.6. Whenever



7.2 Stability for Variational Crimes 145

we apply this result to nonlinear problems the approximating spaces have to
be compatible as well

Proof As a consequence of Theorem 7.2.1 it suffices to show that A=! €
L(V},U,) implies the stability of A*. We determine for an arbitrary u € U,
and v' := Cu the, by assumption, unique exact and discrete solutions, @ and
4", for the equations Bi = v’ and B"a" = Q'"v'. Here B" and Q" are
continuous in U and " (B-—v') = B"-—Q "', see Chapter 6. We introduce
the notations T := B~! and Th := (B")~'Q " € L(V},U}"). Mind that
A, B, C U, -V, A" B C" :u} > V"¢V,
T:V, = Uy, T": Vs — U, Q" :V] - V"

Furthermore, we introduce a linear bounded extension Q. and the corre-
sponding T as

QL VUV =Vt st Qv = Q" QM =id]yyn and (7.11)
T = (B)7'Q € LUV U, Thyy = T"

Theorem 4.4.4 implies that ||(T — T")Cul||yy — 0 for h — 0 and any u € U,
C is compact, so this implies

(T —T"C|ly; s, >0 for h— 0. (7.12)

We have to realize that 7" o C* is not, but TP o Ch : U} — U} is
well defined. We use Remark 6.1.3 throughout the proof, usually without
mentioning it, compare the proof of Theorem 6.1.1. By (2.79) we have

1T E*u® — "By o) 5 (1B = w0 < Ch(nfl)/q||uh||'15v;(9) and
| E" |5 = Cllu® sy ¥ u* € U™ (7.13)
We combine u" € U} with E". With the boundedly invertible A we estimate
llullZ < 2B u"lu < 20|47 [ vy || AB"u"| |y
= 2/[ A7 vy [ BA + TC)E ut| |y (7.14)
< 20| A7 lety vy [1Bllvy s ||+ TCYE" u|
hence

17 +TC)E M|l 2 (IIA™ gy vy [1BlIvyecse) " "Iz /2. (7-15)

We apply the stability of B® to w” := Bhu" to find ||u” ||}, < ||(Bh)_1||vl’>h<7ug1'

||w"|]y. Furthermore
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(I +TFCM)"ify = (BM) ' B*(I + T CM)u"|f;
< B g ggp 1B (I + TECR 1
implies
IBM(I + T CMyut | > (I + TFCMu gy / 11(B™) Ml ggp- (7-16)

Now, we combine the consistency of C* to C, the stability of T" and (7.13)
to estimate

ITHC" = CEM)u" || < (ITHC" (u = TP EMu®)|| 30
+| T} (CM " EMul — CE™u®)||3, 0
< NBM ™l g (R D2 |ul g,
+||THC " E"u" — CEMuM)|130) (7.17)
< ||(Bh)71”v;h<_ug (hmil)/2

+ consistency error of C" w.r.t. E"u”)|lu”||},

Now, we use
" (A) = A" ="(B+C) =B" + C"
= B"I + (B"tch) = BMI + ThCh) Ul —» VI,
see Notation 7.1, the identity T£‘|v:r = (Bh)_lQ'eh|vh;, = (B")~! and the
consistency of C* to C to estimate
A P | = ([ BM(I + (B®) T QL CMut [ by (7.11)
= ||B"(I + T} C")u"||},,. by (7.16),(7.11)
> (1 + TECE |}
—ITHC" = CEMtIl) /1By
> (1 + TO B "Il - |(T - THCE |}
—ITAC" — CEMut ) /1By e
by (7.15),(7.12),(7.11)
> (IluhIIZ/(2llA‘lllub&vgIIBllv;,Hub)
—I(T = T"Cllv 1 || E"u"||ua
-1
—|(I = B")u"||y — IT3(C" - CE”)U"IIZ)/IIB” [
> K'[[u"||5(1 = O(1)) by(7.13),(7.12),(7.17)
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Because of (7.12) and the stability of (B"),c s there exists a positive constant
K, independent of h, such that for all h < hg the following holds:

||AMa"[%, > K|lutllf;  for all u" € Uy,

A similar estimation is valid for the dual (4")? as well. From dimU} =

dim V,fll < oo and Criterion 7.1, now with a uniform bound, we see that A"
is invertible for h < hg. Moreover, we obtain ||(A%)71||? < 1/K,ie.

Upvr'
(AM) e is stable. O
Theorem 7.2.3 yields a Criterion for the stability of discretizations of oper-
ators, which are compact perturbations of coercive operators. An important
example for this kind of operators are A € L(Us,U;) satisfying a so-called
Garding inequality.

Theorem 7.2.5. Let the Banach space Uy be continuously, densely and com-
pactly embedded into the Hilbert space W. Assume that A € L(Uy,Uy) fulfills
a Garding inequality, i.e. there exist constants M > 0 and m such that

< Auyu Sy x> Mllull —m|lull3y ¥ u € U. (7.18)

Then A is a compact perturbation of a coercive operator. Now, Theorem 7.2.3
is applicable and yields the stability of A", Ah.

Proof Identifying W with W', the above assumptions yield U, C W C U;.
Additionally the embedding Iy, is compact, see Zeidler [68]. We obtain
the splitting

A = (A+mly,—uy) — my, sy -

Moreover, A + mly, ; is coercive because of l[ul?, =< Tty —suyus v >urxu
and (7.18). O

Finally, we want to approach the problem of inexact evaluation of the
operators A", QP In many cases, these operators can be evaluated only ap-
proximatively, e.g., by numerical integration, inexact evaluation by divided
differences, aliasing and de-aliasing, or non-exact solution of the systems by
iteration methods. The influence of the first type of perturbations is analyzed
in the following Theorem, an immediate generalization of the well-known first
Lemma of Strang, see Section 6.5, to our situation. The iteration errors can
be estimated in a similar way if they are chosen to become small, similarly
to ||A" — Ah“v{;u—u;t — 0 below.

Theorem 7.2.6. Let L{,f,V,f‘ define a bi-dual admissible scheme. Assume
Ah € C(U;‘,V,?I) and (f) € (V,fl) are “properly” perturbed by A" and f",
respectively, hence,

|| A" —flh||vbh/<_ugl — 0 and ||f" — M%), = 0 for h — 0.

Then, for small enough h,
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A" s stable < A" s stable.

Furthermore, if A" is stable and A" - — f is consistent with A - —f, then the
uniquely determined solution i} of the perturbed equation
= b e

converges to the uniquely determined exact solution ug of Aug = f, more
precisely, for sufficiently small h, we have the error estimates as in Theorem
6.5.3, see (5.16),

lluo —ug||* < C ( inf = [lug — u||* + || Apuo — Anuo||}, + I f - f”ll{@) :
uheUp b
We have assumed the usual situation, that ug is smooth enough to permit

Ah’UO.

Proof The equivalence of the stability of A" and A" is a direct consequence
of the well-known Theorem of Neumann. With ||A® — A*||||(A") || < 1 this
yields the estimate

(ORI
4% =m0

Ian 1 < =

Finally, we obtain the desired error estimate by Theorem 6.5.3. O

Remark 7.2.7. We combine the stability results of this Chapter and consis-
tency results of the last Chapter 6. Then we obtain the final convergence
results for all cases of conforming and non conforming FE and spectral meth-
ods treated in this Booklet. The results concerning stability and convergence
of bordered systems, including Navier-Stokes equations directly carry over
from [16]. In fact, the bordered systems in bifurcation numerics represent a
compact perturbation of A. For Navier-Stokes problems we distinguish two
cases of a moderate coefficient of kinematic viscosity (and hence only mod-
erately interesting phenomena) or very small coefficient (causing all the tur-
bulence problems). For the first case, compact perturbations allow to prove
convergence directly by compact perturbation results from the Stokes oper-
ator. In both cases, whenever FEMs with or without variational crimes have
been shown to yield convergent methods for the Stokes or the Navier-Stokes
problems, the corresponding bordered systems again represent compact per-
turbations of the linearized Navier-Stokes operator. In all these cases, bifur-
cation numerics based on bordered systems for variational crimes in FEs and
collocation and De-aliasing in spectral methods, yield converging bifurcation
scenarios, see [9, 15, 16, 6, 7).
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7.3 Convergence for General FE and Spectral Methods
for Linear and Nonlinear Problems

After proving stability for a large class of operators and their discretization,
we finally formulate the convergence results. They are obtained by combining
this stability with the consistency estimates in Chapter 6. We do not repeat
all the formulas for the conditions imposed in the Theorems in Chapter 6,
but rather refer to the old numbers. The smoothness requirements for the
solutions, ug, are different for the different approaches and are documented
by the index of the norms ||ug|| listed below. In Theorem 7.2.3 we have
required: For a, B € L(Uy,V}), let the discrete B* (or B") be stable and
let A= B+C € L(Uy,V}) with a compact perturbation C of A. Let B" and
C" be consistent with B and C, and A~ € L(V],U;), hence, is boundedly
invertible. For Theorem 7.2.6 we assume A" € LU, VI') and (f7) € (V')

to be “properly” perturbed by AP and f, respectively, hence,
A" — APy = O and [|f" = f"||}, = 0 for b= 0. (7.19)

These conditions are satisfied, as we have seen, for FEMs and spectral meth-
ods applied to elliptic differential operators as 3.2 and for Navier-Stokes op-
erators, whenever the A~! € L(V},Uy).

Theorem 7.3.1. Let Ulf, V,f define a FE or a spectral method with or without
variational crimes. Let A be an elliptic differential operator as in Section 3.2
or a Navier-Stokes operators, with appropriate discretization, with A~! €
L(Vy,Uy), hence, A is boundedly invertible. For a quadrature approzimation
or for collocation methods let (7.19) be satisfied. We do not repeat all the
detailed conditions, but refer to the corresponding Theorems. We find for

FEMs without variational crimes and continuous FEMs with natural
boundary conditions, see Theorems 3.3.4 and 6.2.1:

llug — wollf (o) < CllI*u — ullmi (@) < CA™ Hluollam () (7.20)
FEMs with violated Dirichlet boundary conditions, see Theorem 6.2.5:
llug = wollzr (o) < CllIMu = ullm o) + Coh|lull yzms1-p gy with

Chmin{u”m_z}||U0||W£ax{m,2M’+1—P}(_Q)

p:=2m' —p—min{2m' —p,m + 7} +1/2

IA

(7.21)

and p = 0,1,2 for Gauss-, Gauss-Radau,Gauss-Lobatto points

FEMs with violated continuity conditions, see Theorem 6.3.1:

lua — ol () < ClLTMu — wll s 2y + Ol lfull 42,

. '
< Cpminin ’m_z}||u0||Hmax{m,#’+2}(Q)'

with p' =2m' —1—p— (m + 7).
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FEMs in the isoparametric case, see Theorem 6.4.2:

llug — wollf @y < O™ (|lullzrm () + lluollwa (2)) - (7.22)
FEMs with quadrature approximations methods, see Theorem 6.5.6:
lluo = ugllmr (o) (7.23)
< CpmiTn/? {I;Té:)é @il o @) - llullwz(2), or

{+1—n/2—min{m+7,k+1} . )
<C(h max, llai;llwe (@) - lluollwr+ g

+h€+1_n/2_min{m+7—’k}||f||W°ko(_Q)), for the weak and

_9__ n
< Cpm—2-n/2 zrr}g)é||aij||L°<,(ﬂ) Ml (o), or
f—m/2—mi +7k n - h
< QA magaislws ) - ol o o
+he_"/2_min{m+T’k}”f”Wc’L(Q)) for the strong forms.
Collocation methods on non degenerate subdivisions, see Theorem 6.6.2:

[luo — Ug”H?(!z) (7.24)
< Chm—2=n/2 m.TéX”aij”Lm(Q) : ||u||}Iij(Q)7 or
4,j=0 °
< € (pmr/Emmintmtrm) miax [laisllwz () - luollyym+a g
+pmon/2min{mErmy £l o)) (7.25)

Spectral methods including quadrature approximations methods, see The-
orem 6.6.4:

llug — uollfps (@) < CN—THex@tux gr;éﬁg laijll Lo () - llull g (o) withi.26)

=2, 1p(0) =4, 1c(l) =20, 1.(£) =20+ n/2, pp =2, pc = pr, =4. This
shows the extremely good (exponential) convergence for large m and spectral
methods.

Nonlinear problems: All the above discretization methods for nonlinear
problems: Under the conditions of Theorem 6.7.1 the combination of the es-
timate in (6.133),

[luo — uf}”?p(m < C{ inf ||uo — hh||;”,1(9) + consistency error} (7.27)
uheul

with the above estimates yields the convergence for nonlinear problems in one
of the above realizations.



8. Petrov-Galerkin Methods for Bordered
Systems

To numerically compute bifurcation scenarios, extended and, in particular,
bordered systems have been introduced by Keller and used by many authors,
see Chapter 4.2. In the mean time, the concept of bordered systems, obtained
by few new parameters and equations, see (8.7), is the method of choice.
We combine this case and use our generalized Petrov-Galerkin methods to
solve these types of linear operator equations. Again we can, for stability
arguments, restrict the discussion to linear problems, see Chapter 4.2. We
interpret this combination of bordering with general Petrov-Galerkin dis-
cretization methods as compact perturbation of an invertible operator B
with stable (B")cm. This will yield the desired stability results for bordered
systems.

8.1 Petrov-Galerkin Methods for Bordered Systems

Now suppose, we have the following splitting of Uy, V3 (and U;, V;, we indicate
necessary dual assumptions this way), see Jepson/Spence [40],

Uy = Ny, & My, Vi = Ny, @ My, (8.1)
(and u,; = Nu{) D Mz,{é,V(; = Nv{) @ lel,)

with m-dimensional subspaces Ny, , Ny, (and Ny, Nyr) and (closed) com-
plements My, , My, (and My, Myr). Let

Q € L(Up, Nigy), Q € L(Vo, Ny,) ( and Q' € LU, N,), Q' € LV}, NG, )

and the complementary I — Q,I — Q (and I — Q', I — Q') be the bounded
projections which are induced by the above splittings. For the practical com-
putations, we assume the m-dimensional dual subspaces Ny C Uy, Ny, C Vg
to be chosen such that

Mub = (NU{,)LJMVb = ( 1I/b)L( and Mll,{b = (Nub)LaMV{, = (va)L)

w.r.t. < -,- >, and the bi-orthogonal bases satisfy
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Nty = [@1,-->bm] CUs, Nz =[8,-.,8l] C U and (8.2)
vaz[wla"'”ﬁm]cvb; NV£:[¢{7J¢;7L]CVI§ with
< ¢z7¢; >Z/1b><b[{) = (5i,j and < ¢Z,¢2 >Vb><V,’, = (5i,j,i,j =1,...,m.

Then the above @, Q are defined as

m
Qu := Z < ’LL,(,ZS; >Uy XU} ¢; € Nz,{b for u € Uy and
i=1

Qf = Z <f, ’(ﬁ; >vav{) P; € va for f € V. (8.3)
i=1
We project the operator equation (4.113) to obtain
(I-QAu=(I~-Qf, ueMy, (8.4)

and the complementary equation

(Q)4u = (Q)f.

This splitting is important for discretizing generalized inverses, in particular
for the Liapunov-Schmidt methods in nonlinear problems. (8.4) has an unique
solution for every f € V, if and only if

(I = Q)Almy,) ™" € L(My,, My,). (8.5)
For a Fredholm operator A with index 0 we have, see [40]
(8.5) & N(Q) NN ((T - Q)A) = {0}. (86)

To treat equation (8.4) with the methods from the preceeding Chapters we
transform (8.4). We define L € L(Uy xR™, Vj x R™), its application to (u,a)7,
and (8.4) as in Linear Algebra, as

A wla"-awm Au+z£1az¢z
<5 Sy 0 5...5 0 (u) < U, @ vy xu (f)
= ) ) R 5 L = . = I
: : : « : 0
<7¢Irn >Mb><ul’> 0 PR 0 <u7¢;n >Mb><ul’>
(8.7)
which is equivalent to
(I-QAu=(I-Qf, (8.8)
D aithi = Q(f — Au) = <hi(f — Au) Sy, xy; i
i=1 i=1

The solution u € Uj, of (8.8) automatically is u € My, since < u, ¢y >y, xu; =
s =< u, P, >u, xu; = 0. Hence, we have derived the connection between
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(8.4) and (8.7). Now we can treat equation (8.7) with the methods from
Chapter 7. We obtain an analogous result to Theorems 7.2.1 and 7.2.3. This
is the main Theorem of this Chapter and the goal of the Booklet:

Theorem 8.1.1. Let (U,f, Vf)heH be approximating spaces with dimZ,{,? =
dim V]! and let Qlr, = (Q" Igm). Furthermore, let A = B + C with
A, B,C € L(Up,V}), C be compact and B be boundedly invertible with sta-
ble QIhB|ugz, see Theorem7.2.83. Then the following conditions 1. - 3. are

mutually equivalent and each implies 4:

1. ((I_ Q)A|Mub)71 € 'C(MVMMUb)J
2.V f€Vy(84),(8.8)are uniquely solvable,
3. L7 € L(Vy x R™ Uy x R™),

4. (Q;f;tLh,[zlme)heH 1s stable.

Here, the first condition states the existence of the generalized inverse, see
(8.5). Under the conditions of Theorem 7.2.1 the preceding 1. - 4. are equiv-
alent.

Proof: 1. & 2. & 3. follows immediately from the above discussion con-
cerning the unique solvability of (8.4),(8.8) and (8.7) .

Since dist((%), Ul xR™) = dist(u,U}) and dist((3), VEXR™) = dist(v, V)
forall (%) € Uy x R™ and (%) € V, x R™, respectively., the (U} x R™, V] x
R™),cp are approximating spaces with dim(U x R™) = dim(V} x R™).
The projectors P* Q" in (4.118) are extended to Uy x R™ and Vj x R™
bY7le'g'7 Q;’;:t(vaa)T = (Q’hvaa)T implying ”Qle’;t(vaa)T - (vaa)T“Vbem =
|Q "v — v||y a.s.o.

In order to prove the implication 8. = 4. for L, we have to check the condi-
tions in Theorem 7.2.3, i.e. we have to show that L € L(Uy xR™,V, xR™) is a
compact perturbation of an operator By € L(Up X R™, V, x R™) with stable
discretization Q;’;tBemu; «rm- We define the operators ¢ € L(R™,U;), 97 €

LU, ,R™), and ¥ € L(R™,V}) by
Pa =Y " o}, and Pa:= Y10 ahl, with

& € LU, ,R™), and SMui= (< u, @) >y )7y for uwely CU,

and obtain L = (;‘d g) We write L in the form

B 0 c v
L= (0 IRm) + (¢d —IRm> =: Begt + Cegt-

The bounded invertability of B and the stability of Q"B |ugl (for h < ho),
respectively, imply immediately that B,,; and Q;’;tBezdu;me for h < hg,
respectively., have an (equi-) bounded inverse: In fact,
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1(Qcae Bewtluap xrm) ™ xrmevp xrm < 1@ "Bl ) ™ Hlygpeovp +1

and the stability of (Q'hB|u:)heH shows that (Q;’;thﬂu: wgm) L is uni-
formly bounded (with respect to h), and thus stable.

As operators with finite-dimensional domains, the #, ¥ and Iz~ are compact.
Because C' € C(Up,Vs) the same holds for C.y¢ . Thus, we have checked all
assumptions of Theorem 7.2.3 and this new Theorem is proved.

We may directly employ numerical schemes to yield approximations /\/}f}b C

Ug, Ny, C Vf (and hé C Ul N, h{) C V}') in the following sense: There exist
bi-orthogonal systems @&, ¢;, b " i =1,...,m, see (8.2) with
! ! 1

NG = oh, ..., ¢0] cup, lell; =[ot,...,¢" T cul,

N, =04l €V Ny = it Te V),
often with m = dim N(GY}). These approximations usually satisfy even for
dim N(Gp) > 1

h—0 ' ' h—0
1P"¢i = ¢}y = 0, |[P" ¢} — 6"l — 0 and (8.9)

1Q ™4 — Pl 225 0, [1Q" ¢ — ol llyw 225 0. (8.10)

The choice (8.9) automatically satisfies (8.5) or (8.6) for small h. With a
possibly perturbed A" ~ A" = Q" Aln, A" € LU, VYY) we define the
operator L"* € LU} x R™, V} x R™) by
A £ T algl
I (“h> " Uh’¢{tl_>u'? ad (8.11)
<u, g, .>u,f><u;l’ .
We interpret L as a perturbation of the operator Q;’;tL|u: «rm With
Qe Ll xwm = LM lyp xwmcuapsiem < 1A" = Q" Alygplyr _ygn (8:12)
m
+ D {IIPY ¢ — o [l +1Q " i — 9f llyp }- (8:13)
i=1
Now we can state, compare Theorem 7.2.6

Theorem 8.1.2. Let (U}', VI )nen be a pair of approzimating spaces with
dimU} = dimV} and f € V. Assume (AM)penm € (LU, V) hen and

(f"her € (VM) rew, are “proper” perturbations of(Q'hA|u:)h€H and (Q'" ) nem,
respectively., i.e.



8.1 Petrov-Galerkin Methods for Bordered Systems 155
A" — Q" Alypllyp yp — 0 and ||f* = Q" fllv, = 0 for h — 0.

We define L" as in (8.11) and assume the appropriate regularity, hence, let
(8.5) or (8.6) be correct for Ny, and Ny, spanned by ¢;' and ¢l , respectively.
Then, for sufficiently small h,

(L") hem is stable & (Q;’;tLh,{,,me)heH is stable.
the solution (G, al)T of the perturbed Petrov-Galerkin equation
L"ag, ag)" = (f3, 0)', (af, ag) € Uy x R™,

exists uniquely and converges to the unique solution (ug, )T of (8.7), more
precisely, for sufficiently small h, we have the error estimate

15 = uolle + l|Go = aol| < C(II = P"{lutyua, [I£11(8.14)

HIFA = QM flly + 114" = QM A upllvy v, + Y {IIP i — 67l

i=1

HIQ s — Wl lyp + 1P 5 — o llgpr + 1PF 0 — 0 [l })
The constant C' is mainly the stability constant ||(L") ™ |¢, xRm ey xR -
Proof: Under the above assumptions and with (8.12) we obtain
||Qe};tL|U£‘ xR™ T Lh”y:’ XR”(—Z,{;‘ xR™ — 0, h — 0.

Thus, the rest of the proof follows from Theorem 7.2.6.






9. Application to the Navier-Stokes operator

The stationary Navier-Stokes equation has the form

G(Uap) = i=1

div u

—vAu+ Y u;0u + grad p _(f) w0

v =0 on F:@Q,/pda::O, where
2

9.1)

w=(ug,...,un)l o= (v1,...,00) ", f=(f1r,. ., f) Tt RCR* 5 R, p: N 5 Rn < 3;

here u, p and f denote velocity, pressure and forcing term of an incompressible
medium and v, q test functions, respectively. The condition fQ pdx = 0 is
imposed to guarantee a unique p. The linearization of G(u, p) for (ug = 0, po)
applied to an increment (u,p),u # 0 is the Stokes operator, S. It has the

form
S(u,p) : = (_A“+Vp> - (5) in 2, 9.2)

—div u
u =0on I'=00, [,pdz=0.

We can use either directly all the stability results available for (9.1), see e.g.
[63, 30], and combine it with the results in Chapter 8. Or we interpret S
and its generalization, a saddle point problem see (9.10), as bordered system.
This is shown to satisfy the stability conditions in Theorem 7.2.1 in ' 7, if
the well-known Brezzi-Babuska conditions are satisfied for the Stokes oper-
ators, see (9.13) and Theorem 9.1.2. We show that, for moderate (and not
so important) v, the linearized Navier-Stokes operator represents a compact
perturbation of S, hence satisfies the conditions of Theorem 7.2.3. As bi-dual
approximating spaces we use three different types of finite elements, see Ex-
amples 9.1 and 9.2.

For this second approach, see above, we only study moderate Reynolds num-
bers and therefor normalize v = 1 and require

2 C R*, bounded and I' = 92 Lipschitz continuous. (9.3)
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9.1 The Stokes operator

For the Stokes operator, essentially following the presentation in Hackbusch
[37, 38], we introduce V, W, as

Vo : = Hy(2) x --- x Hy (),

~~

n times

W:=L2(0):={pe L*(N): (j)p(x)da: =0} and (9.4)
U:=Vyx W.

To avoid too many technical details, we restrict the discussion to Petrov-
Galerkin methods. With the inner product < -,- >r=» we apply the usual
Green formula to (—Au + Vp,v)yrxy, = (< —Au + Vp,v >grn)z 1= Jo <
—Au + Vp,v >rn dz to obtain

(_Au + vP; ’U)V{,XVb = a(u,v) + b(p,’l)) = f(v)a v u,v € Vbap ew
— [ a(x)div u(x)de = b(g,u) =0 V g€ W,u €V, with div u =0;

here the bilinear forms af(-,-), b(:,) are defined as
a(u,v) := / < Vu(z), Vu(z) >ra dz for u,v € Vy, (9.5)
2
b(p,v) :== —/ p(z)div v(z)dz for p € L2(02),v € V.
e}

For bounded (2, see (9.3), the a(-,-) and b(-, -) are continuous, [37, 38], Lemma
12.2.12,

|a(u, )| < Callully - [|vlly, [b(p, v)| < Collv]ly - llpllw- (9.6)

This yields the weak formulation of (9.2), where we have replaced f and 0
by f! and f?, respectively.
For given f = (f', %) € Vi x W' determine ug € Vy,po € W such that
G(UO,U)+b(p0,1))=fl(1}) v UGVb,
b(g,u0) = f*(q) ¥ q € W. (9.7)
To obtain the situation in Chapter 7, we replace the Vi, W, a(-,-), b(-, "), f(+),0
in (9.4) - (9.7) by general Banach spaces Vy, W, continuous bilinear forms a, b

and linear forms f! € Vj, f2 € W', respectively. Furthermore, we introduce
U:=Vy x W and z := (u,p),y := (v,q) € U to obtain

c(z,y) ==c ( (Z) , (Z) ) = a(u,v) + b(p,v) + b(q, w),
f@) = flv) + f@), fel. (9-8)
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Then ¢(+, -) is a continuous bilinear form on U xU. Now, let A € L(W,V}), B €
L(W,V;) and C € L(U,U") be the linear operators induced by a(-,-),b(-,")
and c(-,-), respectively. Then

C = (;dﬁ) € LUU), Ca= (;ﬁ) (;) - (A%Tifp) L (9.9)

o = Canona= (5., (1))

= (Au,v)yrxy, + (Bp,0)v xv, + (B, Q)wrxw
= a(u,v) + b(p,v) + b(q, u) = c(z,y).

Certainly, ¢(-,-) is neither elliptic nor coercive, since c¢(z,y) = 0 for all
z = (0,p)-

In this generalized context the Stokes problem, see(9.5), (9.7), can be formu-
lated as in (4.113) or (4.114), (4.115), as a so called saddle point problem

for given f € U' determine xg = (ug,po) € U such that (9.10)

c(zo,y) = (f,y)urxu for all y € U or equivalently
Czy =fel.

Necas shows, see Hackbusch Satz 12.2.14, [37]

Theorem 9.1.1. Let (2 satisfy (9.3) and let C be defined by (9.8) (9.9)
with the operators A, B as induced by (9.5). Then C is boundedly invertible,
C1 e LU U), and the solution (uo,po) € Vo x W = (H}(2))? x L(12)
satisfies

lluollvy) + lIpoll2(2) < CallfHlIv, + [1F2]lw)- (9.11)
Smoother f!, f2 and {2 imply smoother u, p and refine (9.11).
For example, let Vj, W be Banach spaces, A € L(V},V}), B € L(W,V}) and
(VF x WY pem and (VI x W )eqr be approximating spaces for Vy x W
and Vy x W' = (Vy x W)', resp. Consider the above operator C := (;d 13)
with bounded inverse C~' € L(V; x W', V, x W). One can show that
dim V,fl > dim W" is a necessary criterion for the stability of the discrete
operator, cf. Hackbusch [37]. Le. if one chooses inappropriate approximat-
ing spaces, the stability of a discrete operator, C", does not necessarily
follow from the existence of the bounded inverse, C~!, of C. To intro-
duce appropriate way, approximating spaces for V, and W : Approximating
spaces (V) nem, W) hen yield (V) x W"),c g, obviously again approximat-
ing spaces for V, x W. They are bi-dual Petrov-Galerkin approximations for
U simultaneously with V!, W" for V, W. Then we replace (9.7) and (9.10)
by

for given f = (f',f%) € Vj x W' determine (ul,pl) € V} x W" by
aug,v") +b(pg,0") = fH(") V " eV, (9.12)
b(¢" ug) = f2(d") V " eW"
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and

for given f € U' determine z! = (ul,ph) e U" =V} x W" by

clzb,y™) = fW") VY y" =", ¢") eU", equivalently C'zh = £

To use the results in Chapters 7 and 8 we have to combine C~* € L({U',U),
see Theorem 7.2.3, and the stability of C* in (9.13). The famous Brezzi-
Babuska-conditions guarantees stability. It has, for the Stokes operator, the
form, [37],

Let V,io = {veVi:by,v)=0 V yeW"}and
inf {sup{|a(a:,y)| (Y€ VI?,O: ”y”V = 1} HEORS VI?,O; ”:U”V = 1} =ap >0,
inf {sup{|b(w,y)|:y € V', |lyllv =1} :w € W, ||w|ly = 1} = Br > 0
and o, >a>0,06,>8>0. (9.13)

A combination with Hackbusch Satz 12.3.11, [37] yields.

Theorem 9.1.2. Let bi-dual approzimating spaces (U")ncr be given with
dim Wh < dim V! < oo, and the fi, fa, and a(-,-) and b(-,-) in (9.7) be con-
tinuous linear and bilinear forms on Vi, W and Vy x Vy, W x V4, respectively.
Then the discrete problem (9.12) is uniquely solvable, if the Brezzi-Babuska
inf-sup-condition (9.13) is satisfied. If {2 is chosen according to (9.3), (9.13).
Then C" in (9.13) is stable and, under the conditions of Theorem 7.2.1, C
is invertible, C~* € L(U',U) in (9.10) . The conditions of Theorems ?? and
7.2.6 are satisfied and

llug 13 + 16 113 < Cr(ll 1l + (1 fall5),
with Cy, = Cr{a, B,C4,Ch) and C,,Cy in (9.6).

lluo — ug I3 + llpo =PIy < 1+ C ||(Pe}§ctc|v;lxWh)_1||vg><Wh<—v:xv(zgvl‘l)

X[|T = Pl llvyxw vy xwll(C) " v xw vy xw (11113 + | falliw)-

For the specific case of the Stokes operator we only present three examples for
UM =V x Wh, see [37]. For other examples see [63, 63, 30]. Let 2 C R? be
a polygon, hence V, = H}(2) x H}(£2) and 7" a quasi-uniform triangulation
for £2. That is, there exists a fixed o > 0 such that for every triangle T € 7"
the quotient dim 7'/ inradius T < o9, where inradius T is defined as maximal
radius of any circle in T

Example 9.1 Piecewise linear elements and bubble functions: We define,
for linear functions u € Py

Whi={¢": V Ter:q"|reP, /qhdx:()}cLi(n). (9.15)
2
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To introduce the bubble functions u on T let T represent the reference triangle
T={(n):&n>0,8+n < 1} and P the bijective affine mapping & : T — T.
Define, for every T € T",

a(&,m) =&-n(1—&—n) for (£,n) € T, and :=0 otherwise ,
ur(z,y) == @(® 1 (x,y)) for (z,y) € T and :=0 otherwise, ur € H}(2) and

1Z4 ={v" € H}(2): V T €7 :v"; linear combinations of P1
and bubble functions on 7}
2 o=V XV, U=V x W ]

Example 9.2 7) Piecewise linear elements on 73/, and Th . Let 7, /2 be
defined by replacing each T € " by four congruent sub-triangles. Then

Vi = {v} € Hj(2) : linear elements on 135}, VI =V} x Vi,
Wh = {q€e L2() : linear elements on 7"}, U" =V} x Wh.

2) Piecewise quadratic and linear elements on 7" : Let

Viy i= {v}l € Hy(2) : quadratic elements on "}, V' := V') x Vi,
Wh .= {q € LZ(2:) linear elements on 7"}, U" =V{, x W', =
(9.16)

The FEs in Examples 9.1 and 9.2 approximate U as required in Chapter 7.

9.2 The Linearized Navier-Stokes operator

Now we discuss the linearized Navier-Stokes operator again for 2 C R”
and Vy = (H(2))" and follow [63, 63, 30]. Again we multiply with the
test function v = (vq,...,v,) and use the Green formula to obtain, with
a('a ')7 b(7 ) in (95)

For given (f!,0) € Vj x W' determine ug € Vi, po € W such that
Jo{=vAug + 377 (u0)iOsuo + grad po, v)rede

= va(uo,v) + d(ug, ug,v) + b(po,v) = f1(v) V v €V, and
b(po,v) =0 VY v € Vp; here

d(u,v,w) := 30, [oui(0v))w;de

For bounded {2, see (9.3) and n < 4, see Temam,[63] Lemma 1.2, Ch. II,
Chapter 1.

d(u,v,w) is a bounded tri-linear form on Vj x V, X V.
To linearize we consider for fixed u,v and small w

d(u + w,u + w,v) — d(u,u,v) = d(u,w,v) + d(w, u,v) + o(w).
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An analogous results holds for the nonlinear (9.1): We obtain
- > (wid), i0i d
G, p) (w, 1) = vAw + zgl(u 0w + w;O;u) + grad r 9.17)
div w
and, with the a(-,-),b(-,-),d(-,-) in (9.5) and (9.17).

(G (s P)(w,7)), (0, @)1 gy = (ua(w,v) + d(u,w;)g,z;i(w,u,v) + b(r, v))

V(v,q) e Ve x W =U.

Now we consider the d(u,w,v), d(w,u,v)

d(u, w,v) = Z / u;i(Q;wj)vjdz, for v eV, (9.18)
ij=1"%
d(w,u,v) = Z / w; (Oyuj)vjde
ij=1" %
- Z / wiujaivjdar V v € Vp.
ij=17%

For fixed u, the d(u,w,v) + d(w,u,v) are continuous bilinear forms, corre-
sponding to the (sum of) operator(s) z;jjzl(u,-a,-w + w;0u) in (9.17). This
is, for fixed u, linear and bounded in w € Vy. Then the continuous bilinear
forms d(u,w,v) and d(w,u,v) € R define elements

d(u,w,-),d(w,u,-) €V
hence define linear continuous operators
Dy,Ds € LWy, V) as Dyw := d(u,w,-), Dow :=d(w,u,-), for u fix¢d.19)
By (9.17), mind that w is fixed, see (9.18)
(D1w, v)y; xy, = d(u,w,v), (Daw,v)y;xy, = d(w,u,v). (9.20)

Now the embedding I : HJ(£2) — L?({2) is continuous and compact and
(9.20) shows that
Dy =DiIvV ve H ().

Hence, as a product of a compact and a continuous operator, D; = D, I is a
compact operator. The same is correct for Dy as well.

Similarly to the transformation from (9.7) to (9.10) we use here, with the
factor v in (9.1),
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C = (2’3]3),&: (D13D28). (9.21)

and, with slightly different x = (w, ),y = (v, q),

_ (vAw + Br + Dyw + Dyw
-+ D)= i ).
((C+ D)z, y)ur xu = v(Aw, v)yr xy, + (BT, v)vrxp,

+ (D1w + Daw,v)y; xv, + (Bw, Q)wrxw
and formulate

for given f € U' determine zo = (wg,To) such that

((C + D)xo, yurxu = {f,v)uxu ¥ yeU
or equivalently (C' + D)zg = f € U'.

Again Remark ?7?) applies. So we can guarantee the existence of C + D if —1
is not an eigenvalue of the compact operator C~1D. Resuming these results
we have the following

Theorem 9.2.1. . For bi-dual approzimating spaces (U")cp let the Stokes
operator S or its generalization C for S and C see (9.2) and (9.9), respec-
tively, yield stable discretizations, see Theorem 9.1.2. Hence (U")ncrr applied
to a bijective G'(u,p) and to G(u,p) have the desirable convergence prop-
erties of Theorems ?? and 7.2.6. Furthermore for non-bijective G'(u,p), the
bifurcation numerics, based on bordered systems, yield converging bifurcations
scenarios, satisfying the estimate in Theorems 8.1.1 and 8.1.2.
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