Short Course on
Numerical Bifurcation and
Center Manifold Analysis in
Partial Differential Equations

Klaus Bohmer
Department of Mathematics
Philipps University Marburg

Marburg, Germany

October 12, 2001

1 A Short Summary

The announced Short Course presents the main ideas of some chapters of my
book (in preparation) with a similar title. So I start with a short summary and
a list of the chapters planned in this book. Finally, I give contents for those
chapters presented during the short course, and, in footnote style, for those
chapters available as reading material in a nearly final version.

Since the general cases are much too technical for this short course, I essen-
tially restrict the presentation to the simple model problem

—Au+ Af(u) =0in £, ulgq = 0. (1)

The general cases are presented in the available chapters of the book.

2 Main Goals and Outline of the Book

The main goal of this book is to explore numerics and theory of reduction tech-
niques for large dynamical systems, in particular, partial differential equations.
Their space discretization yields large systems . The questions of convergence of
the discretized to the original dynamical system is the core of this presentation.

We are interested in the underlying low dimensional models of complicated
nonlinear behavior in differential equations, e.g., local bifurcations of stationary
solutions and periodic orbits, their local dynamics via center manifolds. Some
aspects of global bifurcation as homo-clinic orbits are studied as well. A quan-
titative and qualitative description of nonlinear dynamics for many systems is



available merely via numerical methods. However, since nonlinear systems are
sensitive to small perturbations at bifurcation points, discretizations of differ-
ential equations may destroy the bifurcation scenario.

The book is aimed for graduate students and scientists who want to study
and analyze numerically bifurcations of differential equations in mathemat-
ics, science and engineering. It consists mainly of five parts and appendices:
LINTRODUCTION INTO BIFURCATION gives examples, motivations and
basic numerical results. ILELLIPTIC OPERATORS AND DISCRETIZATION
METHODS introduces general elliptic operators and the important discretiza-
tions from finite difference to wavelet methods with convergence proofs for non-
linear problems including bifurcation; ITI: NUMERICAL LIAPUNOV
SCHMIDT METHODS reduces stationary and Hopf bifurcation problems to a
system of algebraic equations. IV:NUMERICAL CENTER MANIFOLD METH-
ODS study local dynamics near stationary solutions and periodic orbits via low
dimensional reduced systems V:NUMERICAL HOMO-CLINIC ORBITS and
Lin method analyze dynamics and long time behavior induced by global bifur-
cations, e.g. homo-clinic orbits. There are still a lot of open questions w.r.t. the
last part. So it is not yet possible to give the same type of precise convergence
results as for discretization of Liapunov-Schmidt and center manifold methods.
VI: APPENDIX presents a C++ programme for path following and studies of
singularities for general classes of operator equations, discretizations, linear and
nonlinear solvers and the necessary tools from Functional Analysis and Calculus
in Banach spaces.

The numerical realization of these reduction techniques for partial differen-
tial equations is the central point of all these discussions. To reach this goal,
numerical methods for partial differential equations are studied. We discuss the
actual discretization methods as difference, finite element, spectral and wavelet
methods. We generalize the usual concepts of stability, consistency and conver-
gence of discrete problems and appropriate pairs of projection operators. The
basic tools are approximation theory and a combination of monotone operators
and their compact perturbations allowing two benefits: We obtain, for elliptic
and parabolic operators, including the Navier-Stokes equations, partially new
space discretization methods, e.g., collocation methods on non degenerate sub-
divisions, and new convergence results for wavelet methods. We reach our goal
to ensure convergence of approximate bifurcation scenarios and their dynamics.
It is well known that equi variance has a significant impact on bifurcation and
the dynamics. So we include two chapters for the numerical realization of finite
and infinite groups. Various solution techniques for large sparse systems are
modified and incorporated into the context of bifurcation analysis. Moreover,
we formulate the theoretical reduction techniques in such a way that a numerical
implementation follows directly and efficiently.

In fact, numerical analysis penetrates the whole text and is the essential in-
gredient of the book. Symmetry and normal form theory are exploited, aiming
for efficient numerical algorithms. Furthermore, we discuss utilization of com-
puter algebraic techniques in a study of Hopf bifurcation. We include several
case studies on reaction-diffusion equations and biological problems at different



levels to illustrate the reduction techniques and analysis of bifurcation scenarios,
and their numerical implementations.
Content of the Book:

PART I: INTRODUCTION INTO BIFURCATION
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Chapter 4:
Chapter 5:

Introduction + * 1

Bifurcation Problems in Differential Equations + *
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Elliptic Operators *
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Finite Element Methods + *
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PART III: NUMERICAL BIFURCATION IN PARTIAL DIFFEERENTIAL
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Liapunov Schmidt Methods + *

Case Study Bifurcation for a 2d-Reaction Diffusion Equation
Numerical Liapunov-Schmidt methods + (*)
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Numerical Analysis of Imperfect Bifurcation (*)

1For the Chapters, marked with +, the main ideas are presented for the above special case
(1) during the Short Course. The Chapters, marked with * and (*), are available in a nearly
final form and present papers appeared or submitted similar to this chapter, resp. Those not
included in the Short Course are listed in fotnote style below. The corresponding ps-file will
be availble by end of October



PART IV: NUMERICAL CENTER MANIFOLD METHODS
Chapter 20: Center Manifold and Normal Form Theory
Chapter 21: A Numerical Center Manifold Method + (*)

PART V: NUMERICAL HOMOCLINIC ORBITS
Chapter 22: Melnikov and Lin Method for Homoclinic Orbits

Chapter 23: Approximations of a Bifurcation Function for Homoclinic Or-
bits of Large Systems

Chapter 24: Case Study — Homoclinic Orbits of a System of
Reaction Diffusion Equations and of the Kuramoto-Sivashinski-Equation

PART VI: APPENDICES
Appendix A: Some Results from Functional Analysis *
Appendix B: Calculus in Banach spaces *

Appendix C: Path finder, C++ program for continuation of
solution curves and detecting different types of singularities *

Content of Chapters

PART I: INTRODUCTION INTO BIFURCATION

Chapter 1: Introduction
Exploring nonlinear phenomena in the nature has become a major subject in
many fields during the last decades, from physics, chemistry, biology, engineer-
ing and social science to daily life. Mathematical models for many of these
phenomena are nonlinear problems of the form

ou

BN +G(u,\) =0. (2)
Here G: X xRP — Y is a “smooth” mapping and X, Y are Banach spaces. A €
RP represents various control parameters which are adjustable, e.g. Reynolds
number, catalysts, temperature, density, initial or final products, etc. Normally
a gradual variation of one control parameter corresponds to a unique and con-
tinuous solution curve and the linear stability theory describes well enough the
state of the system. However, there exists a large number of problems for which
the stability and number of solution curves changes abruptly and the structure
of solution manifolds varies dramatically when a parameter passes through some
critical values, e.g. buckling of a rod, onset of convection and turbulence, pattern
formations in chemical and biological reactions, etc. This kind of phenomena,
called bifurcation, describes a qualitative change in a dynamical system. In this



situation the linear stability theory fails and does not give much information
on the qualitative behavior of the nonlinear system. Bifurcation analysis and
nonlinear stability have to be considered. Usually, this requires a combination
with numerical approximations and simulations.

Basically, bifurcation theory studies how solutions of (2) and their stability
and other properties change as the parameter A varies. For two finite dimen-
sional examples of a pitchfork bifurcation in R? and a bifurcation in R™ with
symmetric derivative we introduce the easiest case of Liapunov-Schmidt meth-
ods and indicate further reduction techniques.

Chapter 2: Bifurcation Problems in Differential Equations (with Mei)
We list practically important ordinary and partial differential equations which
give rise to bifurcation. A point (ug, Ag) in X x R? is called a bifurcation point
of (2) if it satisfies (usually the stationary form of) (2) and in all neighborhoods
of (ug, Ag) the problem (2) has at least two different solution branches.

We present an introductory study of several examples to show the qualitative
difference in linear and nonlinear problems and to illustrate local and global
bifurcation phenomena. Some of these examples will be used successively in the
book, especially in case studies

e Breaking rod [?, ?J;

e Rod with axial load;

e Chladny sound figure [?, 7, 7, ?];

e Von Kdrmén equations [?];

e Kuramoto-Sivashisky equation [?, ?];
e Reaction-Diffusion equations [?, 7, ?];

e Navier-Stokes equation [?, 7, ?, 7, 72,2 7,27 7]

2

2Chapter 3: Continuation of Solution Branches (with Mei)

We describe numerical continuation methods and the detection of singular points on the solu-
tion curves. For large systems Krylov type iteration methods are very efficient. So we discuss
these types of iteration methods to solve linear problems and to determine the critical eigen-
values of the linearized operators (of the finite dimensional discretizations). Next we consider
some pre-conditioning techniques which are extremely important for the good convergence of
these iteration methods. Numerical results and a subsection on invariant subspaces and their
efficient theoretical and practical computation conclude this Section.

e Numerical continuation methods;
e Krylov subspace;

e Pre conditioning;

e Numerical Results;

e (Invariant subspaces.)

Chapter 5: Bifurcation problems with symmetry (with Mei)
Symmetry and symmetry-breaking are features widely involved in nature and science. The



PART II: ELLIPTIC OPERATORS AND DISCRETIZATION METH-
ODS

3

Chapter 8: Finite Element Methods

This is one of the standard techniques to numerically solve elliptic problems.
In the usual setting mostly low oder or h,p methods are discussed and are
appropriate. Since we want to apply the whole machinery to nonlinear problems
including turning points, bifurcation, a.s.o., we have to allow possible high order
methods as well. This enforces a careful study in particular of finite element
methods with variational crimes. It is applicable to define high order collocation
methods on non degenerate subdivisions of the domain.

For ODEs collocation is one of the most powerful and flexible methods. For
PDES, this seems to be a new class of discretization methods. The possible high
orders are certainly attractive for singularities in nonlinear problems. However,
nearly all practical questions are still open, e.g., efficient determination and
solution of the underlying (non-)linear systems, operator evaluation and grid
strategies. In particular we study:

e Approximation theory for Finite Elements on polygonal and curved do-
mains with and without variational crimes;

e Conforming finite elements;
e Finite elements with variational crimes;
e Consistency and co-ercivity for variational crimes;

e Generalized Strang lemmas;

developments of bifurcation theory with symmetries has demonstrated that highly complicated
bifurcation structure can be studied systematically with group theoretic concepts. Equivariant
branching lemma and bifurcation subgroups are the principle tools for simplifying bifurcation
analysis. Exploiting symmetries in numerical analysis is an efficient technique to reduce
computational costs and to improve condition numbers in numerical solution of linear and
nonlinear problems. Group theoretic methods have been applied to develop efficient numerical
schemes for both algebraic and differential equations.

We review some basic concepts in group theory and fundamental results of bifurcation
theory with symmetry and their applications to numerical analysis, for examples,

e Important finite and continuous groups;
e Representation of groups and irreducibilites;

e Equivariant and symmetric operators.

3Chapter 6: Elliptic Operators
Appendix A presents Sobolev spaces relatively extensively. So, we give here the complemen-
tary features which are necessary for the context of discretization, in particular for bifurcation
and dynamical properties. We study:

e Bilinear forms and induced linear operators;
e Elliptic bilinear forms;

e The Navier Stokes equation.



e Stability and convergence for general finite elements.
4

Chapter 12: Stability for General Discretization Methods

In the preceding chapters on difference, finite element, spectral and wavelet
methods we have essentially combined approximation properties of the corre-
sponding function spaces, the co-ercivity of bilinear forms (which is usually rel-
atively easy to prove) and the concept of compact perturbation. These concepts
allow to include

e Generalized Petrov-Galerkin methods and methods with crimes;

e Regularizing difference methods;

Stability of generalized Petrov-Galerkin methods;

Stability for Petrov-Galerkin methods applied to bordered systems

Application to Navier-Stokes operator

PART III: NUMERICAL BIFURCATION IN PARTIAL
DIFFERENTIAL EQUATIONS

Chapter 13: Liapunov-Schmidt Methods

We start discussing efficient low dimensional modeling of bifurcation problems.
We introduce the Liapunov-Schmidt method and its extensions. Besides the
classical Liapunov-Schmidt method, we consider particularly the generalizations
by Jepson/Spence and modifications. By reducing the problem to an underlying
low dimensional system of algebraic equations we can often derive the bifurca-
tion scenario directly with the established singularity theory. We discuss an
iterated method for the Liapunov-Schmidt method and calculations of Taylor
expansion of the reduced bifurcation equations. This allows an easy calculation

4Chapter 9: Spectral Methods =Section 1,2 of Béhmer,Geiger,Rodriguez [?]
Spectral methods are particularly important if, problems equivariant w.r.t. an infinite group,
have to be discretized. The approximating elements in these spectral spaces and hence the
discrete approximation of these operators inherit this equi-variance Due to the high accuracy
of spectral methods, applicable to only simple domains, they have been used recently in
many papers to study bifurcation for operator equations. Here we present a short version of
comprehensive other versions in ([?, 7, 7, 7, ?]).

Chapter 10: Discretization Methods with Finite Symmetry Groups: Paper
Allgower,B6hmer,Georg,Miranda, [?] We have seen that symmetry imposes strong ad-
ditional structure onto bifurcation phenomena. Numerically we have to distinguish between
finite and infinite groups. In this chapter we study finite symmetry groups, in particular

e Symmetry in Finite Element methods;

e Equi variance of Operators;

o Twisted Reynolds projectors;

e Symmetry respecting discretizations;

e Examples of decomposition of the identity;

e Criteria for direct sum decompositions.



of the Taylor expansion of the reduced equations and its implementation. This
involves the topics

e Motivating Example
e The Liapunov-Schmidt-Method

Generalized Liapunov-Schmidt-Method

Tterative calculations ([?, 7, ?, 7, ?]) of Taylor series of the reduced equa-
tions

Hopf bifurcation ([?])

Chapter 15: Numerical Liapunov-Schmidt Methods

Since many elliptic equations cannot be solved directly we have to use different
types of discretization methods. This is correct for problems with or without
the bifurcation. The present form is based on consistent differentiability and
bordered stability. Or it employs different projection operators for the pre-
image and the image spaces. For many of the following discretization methods
the first concept is appropriate for others, e.g., finite element methods with
variational crimes, the second is required. A convergence theory covering all
these different methods is developed. The discretization of Liapunov-Schmidt
methods requires in particular

e General concepts of discretization methods;

e Extension operators and approximate projectors;

e Discretization near singular points;

e The numerical Liapunov Schmidt method;

e An Algorithm for numerical Liapunov Schmidt methods;
e Numerical example for stationary bifurcation;

e Example for Hopf bifurcation.

5

5Chapter 17: Case Study — Symmetric Pattern Formation for a 3d Reaction-
Diffusion Equation = Section 3,ff of Bohmer,Geiger Rodriguez
We study stationary bifurcations of a 3d reaction-diffusion equation. These equations are
typical models in chemical reactions, biological systems, population dynamics and nuclear
reactor physics. They are of the form
9u _ DA+ f(u, A). (3)
ot
Here w = (u1,...,uk) represents various substances in a chemical reaction or species of a
biological system; A € RP is a vector of control parameters; A is the Laplace operator in
the spatial variables and describes diffusion of different substances; the matrix D € RkXk
is symmetric, positive semi-definite, often diagonal and consists of diffusion constants; the
mapping f : RF x RP — RF is a vector of smooth functions and represents the reaction among



PART IV: NUMERICAL CENTER MANIFOLD METHODS

Chapter 21: A Numerical Center Manifold Method Reduction
Center manifold theory is essential for analyzing dynamics near local bifurca-
tions. As the Liapunov-Schmidt reduction for stationary and Hopf bifurcations,
center manifold theory is used to reduce a dynamical system near a non hy-
perbolic equilibrium or a periodic solution to a low-dimensional system. Fur-
thermore, stability of solutions and local dynamics of the system can be derived
from the low-dimensional system. The center manifolds were introduced in the
sixties by Pliss [?] and Kelley [?]. Owing to the Lanford’s contribution [?] this
theory has been applied extensively to the study of bifurcation problems and
dynamical systems, in particular, in connection with the normal form theory.

We are mainly interested in applying the techniques of center manifold theory
to partial differential equations and in deriving the lower dimensional underlying
systems (cf. Mei [?]), based on detailed discussions in Carr [?], Tooss/Adelmeyer
[?], Vanderbauwhede [?] about center manifold reduction and normal form the-
ory for ordinary differential equations in finite dimensional spaces, and Chow/Lu
[?], Henry [?] Vanderbauwhede/Iooss [?] for infinite dimensional systems and
partial differential equations
. Similarly as in the Liapunov-Schmidt method, the center manifold and the re-
duced equation are explicitly available only in exceptional cases. So we calculate
for general problems their Taylor expansions successively. For PDEs we have
to use space (and time) discretization methods with respect to the space (and
time as well) to approximate these center manifolds. Time discretizations have
been studied by Lubich e.a.,[?, ?]. Again stability, consistency and convergence
of spatially discretized problems have to be adapted to center manifolds (cf Mei

the substances.
As a more complicated example we study a pattern formation in biology with high spherical
symmetry, characterized by | = 2,1 = 3. We have to carefully go through the different steps

e Linearized eigenvalue problem of a model problem;
e Application of the Liapunov-Schmidt reduction;
e Generic bifurcation in the [ = 2 representation;

e Generic bifurcation in the [ = 3 representation, where | = 2 and [ = 3 refer to wave
numbers in the problem.

Chapter 19: Numerical Analysis of Imperfect Bifurcation = Paper Béhmer,
Janovska, Janovsky [?]

The aim in this chapter is the following: We want to re transform the bifurcation scenarios
from the normal form or its unfolding of the reduced bifurcation functions to the bifurcation
situation of the original operator equation. This is an astonishingly nontrivial problem and
has been solved in [?, ?, 7, 7, 7, ?, ?] for stationary bifurcation of co-dimension < 3 or = 3.
We study an appropriate formulation of the bifurcation equations and the diffeomorphism
with the original problem

e Computation of the differential of this diffeomorphism;
e Remarks on implementations;

e Tables necessary for practical application of these results.



[?], Bohmer/Sassmannshausen [?].

We are able to prove that by the space discretization we obtain a discrete center
manifold such that the coefficients in the normal form of the discrete center man-
ifold converge to those of the original center manifold. This implies in particular
convergence of dynamical scenarios. In the Literature until now only numerical
experiments for space discretized center manifolds, but no convergence results
are reported. We study

e Basics for center manifolds;

e Center manifolds for simple Hopf bifurcation;
e Transformation to normal forms;

e Numerical center manifold method;

e Center manifolds for parameter dependent problems

6

6
PART V: NUMERICAL Homoclinic Orbits

PART VI: APPENDICES
Appendix A: Functional Analysis We present the necessary basics, e.g.,

e Linear functiOonals and dual spaces;
e Linear operators and projectors;
e Linear operators in Banach spaces;
e Sobolev spaces.
Appendix B: Calculus in Banach spaces We present the necessary basics, e.g.,
e Derivatives for operators in Banach spaces;
e Integrastion and mean value theorems in Banach spaces;
e Paartial derivatives of operators;
e Higher derivatives;
e Implicitely defined operators, Newton methods;
e Taylor-formula.

Appendix C: Pathfinder, C++4 program for continuation of solution curves and
detecting different types of singularities

We present a C++ program in a very short version. It is aimed to allow the following:
Different types of operators and discretizations, corresponding solution techniques for linear
and nonlinear problems can be defined by the user or taken over from some other libraries.
Then it yields a tool to compute parameter depending solution curves and the corresponding
singularities. The goal is to have a programme available which is applicable to a wide class of
problems, discretization methods, singularities, test functions a.s.o. with all the advantages
of the C++ programming.
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