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threshold, then it is possible to efficiently quantum
compute arbitrarily accurately.



The Threshold Theorems

.|
o The Accuracy Threshold Theorem:
Assume the requirements for scalable computing. If
the error per gate (including “no-op”) is less than a
threshold, then it is possible to efficiently quantum
compute arbitrarily accurately.

e Error Thresholds:
- Worst case

- Estimate
= Communication
= Erasure

= /Z-measurement

Shor 1996[~ ], Kitaev 1996[1 1], Aharonov&Ben-Or 1996[], Knill& al. 1996[1¢].
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Sufficient Requirements for Scalability

Realize QIP task with M gates and noops, N qubits.

Systems:
polylog(M )N independent > 2 state subsystems.

Preparation:
Can reset subsystem to |0) anytime.

Control:
Universal two-system gates can be applied.

Parallelism:
Can apply gates in parallel.

Or: Perfect long-term memory.

Noise:
Sufficiently weak.

Quasi-independent.
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e Quantum noise in QIP:
Any unwanted effect in quantum systems.

o By temporal behavior.

- Step-wise independent,
discrete.
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- Relaxation: Decay to
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Types of Noise

e Quantum noise in QIP:
Any unwanted effect in quantum systems.

By temporal behavior. By spatial behavior.
Step-wise independent, Local or factorizable.
discrete. Symmetric.
Markovian. Linear.

Relaxation: Decay to ..

equilibrium. By origin.
Depolarization. Thermal.
Dissipation, thermal relaxation. Control errors, faults.

Decoherence: Loss of phase. Miscalibration.

Stationary. Over/under-rotation.

Stray fields or
iInhomogeneity.
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e Error locations:

For each gate U, including U; = noop:
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o Error locations:
For each gate U, including U; = noop:

Uz'actual =F iUiintended
Locality: F; acts on the same qubits as U,.
o Error expansion with “environment”:

|¢> - Z |€>E Ee,nUn T Ee,2U2 Ee,1U1|¢>

The |e). need not be orthogonal.
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A Measure of Noise

Error bound
Actual state

Some acceptable state

Wavefunction:

loutput) = |acceptable) + |error)

Error probability is bounded by (error|error).
Density operator:

Pout — Pacceptable + Perror

Error probability is bounded by (tr|perror| + [trperror|) /2.
Acceptable states need not be unique.
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o Noise given by error expansion:
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e The support of error term e is
the set of ¢ such that ~. ; is not L.
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Noise given by error expansion:
) = le)y EenlUn - Be2Us Ee Uil

The support of error term e is
the set of 7 such that £, ; iIs not IL.

Quasi-independent with probabillity p if for each
IC{l,...,n}
probability of errors with support D I is < pl!l.
Threshold: p < 107° at worst.
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Independent Noise Models

Systematic models.

Only one environment state |e). .
) — e} ValUn - Vol ViUi|h)
Examples: Frequency errors, miscalibration.
Correctable by classical control.

Random models.

Orthogonal environments at each site.
W) — (0 T+ .+ k), Enky ) Un -
|O>E2]I + ...+ |]<32>E2E2,k2 Us
00, T+ ...+ [k1)g, E1 k) Unl9)

Example: Independent thermal relaxation.




Simple Random Models

o Random bit flips X (p).
= One qubit: /1 — p|0).I + /p|1):0%.
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Simple Random Models

Random bit flips X' (p).
One qubit: /1 — p|0).I + /p|1).0..

Two qubits?
Threshold?
Depolarizing noise P(p).
One qubit:
1— %p |O>E]I -+ \/ ip |1>EO-$ + \/ ip |2>50y + \/ ip |3>Eaz-
Two qubits?

Other independent models can be “twirled” into this.
Threshold: p < 10747

Erasure/detected loss L(p).
V1= plO)I+ /pl1)P(1).

E is accessible.
Threshold: p < 1072 at worst.
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eLOQC Designer Errors

o eLOQC: Efficient linear optics quantum computation.

A =
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eLOQC: Efficient linear optics guantum computation.

[D* \
" 1. Non-d Inistic QC (nLOQC)
A > — 1. NONn- eterministic N
e N
A e
y
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eLOQC: Efficient linear optics guantum computation.

g ‘
AE » = 1. Non-deterministic QC (nLOQC)
B = 2. Near-deterministic QC (dLOQC)
A
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Source of non-determinism:. Z-measurement errors.
Elementary gates succeed, but. ..
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eLOQC Designer Errors

eLOQC: Efficient linear optics guantum computation.

g ‘
AE » = 1. Non-deterministic QC (nLOQC)
B = 2. Near-deterministic QC (dLOQC)
A
° ) = 3. Efficient QC (eLOQC)

Source of non-determinism: Z-measurement errors.

Elementary gates succeed, but. ..

... with probability f: qubit measured.
Threshold: f < .5 at worst.

Knill&Laflamme&Milburn 2001 [1 =]
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Methods for Scalabllity

o Error-correcting subsystems.

o Concatenation.

GO t0: s e e

X
Q.

Go to:

e .
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Error-correcting subsystems. Goto: S
g subsy

Q.
Concatenation. Goto: (W

= unbounded distance communication.

Transversally encoded operations. co “’:

Measurement or Operation
— state preparation + teleportation.
<t @
@

Go to:

Robust error detection and recovery.

Jump to: Conclusion
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Methods for Scalabllity

Error-correcting subsystems. Gotor S
g stubsy

Q
Concatenation. Gowor (AW

= unbounded distance communication.

Transversally encoded operations. co “’:

Measurement or Operation
— state preparation + teleportation.
<t @
@

Go to:

Robust error detection and recovery.

= accuracy thresholds.

Jump to: Conclusion
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Error-correcting Subsystems
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Back to: Methods for Scalability
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Concatenation

;. Assume:
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Concatenation

Assume:
o Error model preserved.
e > 1-error elimination.

L evel Error rate
K < CQk—1p2k
2
A D4 S 0(303]92 3)2
— 2 —1p2
p3 < C(Cp?)?
3 221, 22
2 p2 < Cp?
1 p

Back to: Methods for Scalability
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Pauli Product Operator Rotations

One qubit rotations and gates:

Xogo = e—ioxﬁ/él

Y_gpo = eiov™/4

Zy = 6—@'029/2
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Pauli Product Operator Rotations

One qubit rotations and gates:

Xg()o — e—ioxﬁ/él

Ty = 6—@'029/2

Two qubit rotations and gates:

ZW 7@, = g=io:Vo:o)2 @
YD) 7)) g0 = e—ioyVo:Pm/2 @
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Rotation Equivalences
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Rotation Equivalences
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Rotation Equivalences
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Error Propagation
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Transversally Encoding Operations

Repetition code for bit
flips.

Stabilizer: ( 721,127 ) B

0} = [000), |1} = 111}

;

A
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Transversally Encoding Operations

(
Repetition code for bit

flips.

Stabilizer: ( ZZI1,127Z) B

0} = [000), |1} = 111}

“Encoded” cnot ... (

A

Back to: Methods for Scalability
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Teleportation
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Operation = Preparation + Teleportation |
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Gottesman&Chuang 1999 [10] To: Advantages of Teleportation
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Operation = Preparation + Teleportation |l

To: Advantages of Teleportation
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Measurement = Preparation -+ Teleportation
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Measurement = Preparation -+ Teleportation
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Advantages of Teleportation

Transversal after successful state
preparation.

Fault tolerant universality.

Robust syndrome detection for recovery from
error.
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Advantages of Teleportation

Transversal after successful state
preparation.

Fault tolerant universality.

Robust syndrome detection for recovery from
error.

Good error detection suffices.

Reject attempted state preparations if errors are
detected.

Back to: Methods for Scalability
_____________________________________________________________________________________________________________________________________________________________________________________________________|
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Conclusion

Accuracy threshold questions:
Bit flip error model?

Erasure error model?

Depolarizing error model?
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Conclusion

Accuracy threshold questions:
Bit flip error model?

Erasure error model?

Depolarizing error model?

Worst-case dimension of a maximum size
error-detecting quantum code in an n-dimensional space
subject to an e-dimensional error model?

(Best bound known: Q(n/e?).)

25



References

(1]

(2]
(3]

(4]
(5]
(6]
(7]
(8]
El
[10]
[11]
[12]
[13]
[14]
[19]
[16]
[17]
(18]
[19]
[20]
[21]
[22]

(23]
[24]
[25]
[26]
[27]

D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. In Proceedings of the 29th Annual ACM Symposium on the Theory of Computation
(STOC), pages 176-188, New York, New York, 1996. ACM Press.

D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. quant-ph/9906129, 1999.

A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Macchiavello. Stabilization of quantum computations by symmetrization. SIAM J. Compuit.,
26:1541-1557, 1997.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters. Mixed state entanglement and quantum error-correcting codes. Phys. Rev. A, 54:3824-3851, 1996.
A.R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane. Quantum error correction and orthogonal geometry. Phys. Rev. A, 78:405-408, 1997.

A.R. Calderbank and PW. Shor. Good quantum error-correcting codes exist. Phys. Rev. A, 54:1098-1105, 1996.

W. Diir, H.-J. Briegel, J. I. Cirac, and P. Zoller. Quantum repeaters based on entanglement purification. Phys. Rev. A, 59:169-181, 1999.

D. Gottesman. A class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A, 54:1862—-1868, 1996.

. Gottesman. A theory of fault-tolerant quantum computation. Phys. Rev. A, 57:127-137, 1998.

. Gottesman and |. L. Chuang. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402:390-393, 1999.
. Yu. Kitaev. Quantum computations: algorithms and error correction. Russian Math. Surveys, 52:1191-1249, 1997.

. Knill and R. Laflamme. A theory of quantum error correcting codes. Phys. Rev. A, 55:900-911, 1997.

. Knill, R. Laflamme, and G. Milburn. A scheme for efficient linear optics quantum computation. Nature, 409:46-52, 2001.

. Knill, R. Laflamme, and L. Viola. Theory of quantum error correction for general noise. Phys. Rev. Lett., 84:2525-2528, 2000.

. Knill; R. Laflamme, and W. Zurek. Resilient quantum computation: Error models and thresholds. Proc. R. Soc. Lond. A, 454:365-384, 1998.
. Knill, R. Laflamme, and W. H. Zurek. Resilient quantum computation. Science, 279:342-345, 1998.

. A. Lidar, I. L. Chuang, and K. B. Whaley. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett., 81:2594-2597, 1998.

B. Misra and E. C. G. Sudarshan. Zenos paradox in quantum theory. J. Math. Phys., 18:756-763, 1977.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cmabridge University Press, 2001.

J. Preskill. Reliable quantum computers. Proc. R. Soc. Lond. A, 454:385-410, 1998.

P. W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 52:2493-2496, 1995.

P. W. Shor. Fault-tolerant quantum computation. In Proceedings of the 37th Symposium on the Foundations of Computer Science (FOCS), pages 56—65, Los Alamitos,
California, 1996. IEEE press.

A. Steane. Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A, 452:2551-2577, 1996.

L. Viola, E. Knill, and S. Lloyd. Dynamical decoupling of open quantum systems. Phys. Rev. Lett., 82:2417-2421, 1999.

L. Viola and S. Lloyd. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A, 58:2733-2744, 1998.
L. Viola, S. Lloyd, and E. Knill. Universal control of decoupled quantum systems. Phys. Rev. Lett., 83:4888—-4891, 1999.

P. Zanardi and M. Rasetti. Noiseless quantum codes. Phys. Rev. Lett., 79:3306-3309, 1997.

ommMmQmm>» O O



	Robust Quantum Information Processing

