Quantum Lower Bounds

Ronald de Wolf

CWI and University of Amsterdam
http://www.cwi.nl/~rdewolf

Why Lower Bounds?

• Main question for a computer scientist:

Which problems admit quantum speed-up?

• Equivalent question:

Which problems don't?

 We need lower bounds to answer this: provable limits on the power of quantum computers

Overview

- 1. Black-box computation
- 2. Early lower bounds
- 3. Two general methods:
 - polynomials
 - quantum adversary
- 4. Complexity of searching & sorting
- 5. Open problems

Black-Box Computation

- ullet We want to compute $f:\{0,1\}^N o \{0,1\}$ of input $x=(x_1,\ldots,x_N)$
- Input can only be accessed via queries:

$$i \longrightarrow x_i$$

- Unitary transformation: $\begin{array}{c} O|i,0\rangle = |i,x_i\rangle \\ O|i,1\rangle = |i,1-x_i\rangle \end{array}$
- QC can query superposition:

$$O\left(\frac{1}{\sqrt{N}}\sum_{i=1}^{N}|i,0\rangle\right) = \frac{1}{\sqrt{N}}\sum_{i=1}^{N}|i,x_i\rangle$$

Minimize the number of queries used

Example: Deutsch-Jozsa

- $x=(x_1,\ldots,x_N)$, $N=2^n$, either (1) all x_i are 0 (constant), or (2) exactly half of the x_i are 0 (balanced)
- Classically: $\frac{N}{2} + 1$ queries needed
- Quantum: 1 query suffices

Deutsch-Jozsa (continued)

After first Hadamard:

$$\left(\frac{1}{\sqrt{2^n}}\sum_{i\in\{0,1\}^n}|i\rangle\right)\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)$$

After query:

$$\left(rac{1}{\sqrt{2^n}}\sum_{i\in\{0,1\}^n}(-1)^{x_i}|i
angle
ight)\left(rac{1}{\sqrt{2}}|0
angle-rac{1}{\sqrt{2}}|1
angle
ight).$$

After second Hadamard (ignore last qubit):

$$rac{1}{\sqrt{2^n}}\sum_{i\in\{0,1\}^n}(-1)^{x_i}rac{1}{\sqrt{2^n}}\sum_{j\in\{0,1\}^n}(-1)^{i\cdot j}|j
angle.$$

Amplitude of $|j\rangle = |0...0\rangle$ is

$$rac{1}{2^n}\sum_{i\in\{0,1\}^n}(-1)^{x_i}=\left\{egin{array}{ll} 1 & ext{if constant} \ 0 & ext{if balanced} \end{array}
ight.$$

Measurement gives correct answer

Definition of Black-Box Complexities

- D(f): # queries for deterministic algorithm $R_2(f)$: # queries for bounded-error algo (error probability $\leq 1/3$ for all x)
- A T-query quantum algorithm:

• $Q_E(f)$: # queries for exact quantum algo $Q_2(f)$: # queries for bounded-error quantum algo (error $\leq 1/3$ for all x)

Most Quantum Algorithms are Black-Box

• Deutsch-Jozsa: $Q_E(\mathrm{DJ}) = 1 \text{ vs. } D(\mathrm{DJ}) = \frac{N}{2} + 1$

• Shor's period-finding (implies factoring): $x = (m(0), \dots, m(N)), \exists r \forall i \ m(i) = m(i+r)$ $Q_2(\text{find-}r) = O(1) \text{ vs. } R_2(\text{find-}r) \geq N^{1/3}$

• Grover search:

$$x=(x_1,\ldots,x_N)$$
, find i s.t. $x_i=1$ $Q_2(\text{search}) \approx \sqrt{N}$ vs. $R_2(\text{search}) \approx N$

- Also: Simon, counting, ordered search,...
- Not: communication complexity, automata

Early Lower Bounds

- Jozsa (91): what is the power of 1 query?
 Answer: not much
- BBBV (93-97): \sqrt{N} lower bound on search (pre-dates Grover's algorithm!)

Their idea (hybrid method):

Examine T-query algo on $x=(0,\ldots,0)$. At most T^2 variables influence outcome. But all N inputs are relevant $\implies T^2 \geq N \implies T \geq \sqrt{N}$

Method 1: Polynomials (BBCMW 98)

- ullet Boolean function $f:\{0,1\}^N o \{0,1\}$ polynomial $p:\mathbb{R}^N o \mathbb{R}$
- p represents f if $f(x) = p(x) \ \forall x$ deg(f) minimum degree of such p
- p approximates f if $|f(x) p(x)| \le 1/3 \ \forall x$ $\widetilde{deg}(f)$ minimum degree of such p
- Example:

$$x_1 + x_2 - x_1x_2$$
 represents $OR(x_1, x_2)$ $\frac{2}{3}x_1 + \frac{2}{3}x_2$ approximates $OR(x_1, x_2)$

• Polynomial lower bounds:

$$\frac{deg(f)}{2} \le Q_E(f)$$
 and $\frac{\widetilde{deg}(f)}{2} \le Q_2(f)$

Amplitudes Are Polynomials

ullet Final state after T queries depends on x:

$$|\phi\rangle = \sum_{k \in \{0,1\}^m} \alpha_k(x) |k\rangle$$

- $\alpha_k(x)$ are polynomials of degree $\leq T$, proof:
 - 1. Initially (T=0) the α_k are constants
 - 2. O permutes $|i,0\rangle$ and $|i,1\rangle$ iff $x_i=1$:

$$O\left(\alpha|i,0\rangle+\beta|i,1\rangle\right)=$$

$$(lpha(1-x_i)+eta x_i)|i,0
angle+(lpha x_i+eta(1-x_i))|i,1
angle$$
 thus O adds 1 to the degree

3. Amplitudes after U_j are linear sums of old amplitudes, cannot increase degree

Lower Bounds from Degrees

• Probability of output 1:

$$P(x) = \sum_{k \text{ starts with 1}} |\alpha_k(x)|^2$$

P(x) is a polynomial of degree $\leq 2T$

• For exact algorithms, $P(x) = f(x) \ \forall x$: deq(f) < degree of <math>P < 2T

$$\implies \frac{deg(f)}{2} \le Q_E(f)$$

• For bounded-error: $\frac{\widetilde{deg}(f)}{2} \leq Q_2(f)$

Examples of Degree Lower Bounds

- $deg(OR) = N \Longrightarrow Q_E(OR) \ge N/2$ No speed-up for error-less search!
- $\widetilde{deg}(OR) = \sqrt{N} \Longrightarrow Q_2(OR) \ge \sqrt{N}/2$ BBBV's lower bound on Grover search!
- $\widetilde{deg}(\mathsf{PARITY}) = N \Longrightarrow Q_2(\mathsf{PARITY}) \ge N/2$ No significant speed-up for parity! (independently by Farhi et al., 98)
- $\widetilde{deg}(f) \approx N$ for most f (Ambainis) No significant speed-up for most f!

D(f) and $Q_2(f)$ Polynomially Related

- Block sensitivity: measures influence of changes in x on f(x)
 - $-\sqrt{bs(f)} \leq \widetilde{deg}(f)$ (Nisan & Szegedy 94)
 - $D(f) \le bs(f)^3$ for total f (BBCMW 98) (i.e., no promise on N-bit input)
 - Hence $D(f) \leq Q_2(f)^6$ for all total f
- For all total functions in the black-model:

quantum bounded-error computation is at most polynomially better than classical deterministic computation

Method 2: Adversary (Ambainis)

- Adversary method: If A computes f, then it must distinguish inputs x and y whenever $f(x) \neq f(y)$; otherwise correct output of A on x implies the same (now incorrect) output on y.
- ullet Distinguishing many (x,y)-pairs is hard
- Gives good bounds for some problems:
 - $-\sqrt{N}$ for quantum search
 - $-\sqrt{N}$ for AND-OR tree
 - $-\sqrt{N}$ for inverting a permutation

Idea of the Method

- Let X and Y be sets of inputs such that $f(x) \neq f(y)$ whenever $x \in X$ and $y \in Y$
- Let $|\psi_x^j\rangle$ be state of the algorithm after j queries on input x, then $|\langle \psi_x^T | \psi_y^T \rangle| \leq \frac{1}{2}$ (else measurement can't distinguish them)
- $\bullet \ W_j \stackrel{def}{=} \sum_{x \in X, y \in Y} |\langle \psi_x^j | \psi_y^j \rangle|$
- Initially: $W_0 = |X| \cdot |Y|$
- ullet At the end: $W_T \leq \frac{1}{2}|X|\cdot |Y|$
- If we can show $|W_j W_{j+1}| \leq B$, then

$$Q_2(f) \ge \frac{W_0 - W_T}{B} \ge \frac{\frac{1}{2}|X| \cdot |Y|}{B}$$

Example: Search

•
$$X = \{(0, ..., 0)\}$$

 $Y = \{e_i \mid 1 \le i \le N\}$

$$\bullet \ W_j \stackrel{def}{=} \sum_{x \in X, y \in Y} |\langle \psi_x^j | \psi_y^j \rangle|$$

- Initially: $W_0 = |X| \cdot |Y| = N$
- ullet At the end: $W_T \leq \frac{1}{2}|X|\cdot |Y| = \frac{N}{2}$
- Ambainis: $|W_j W_{j+1}| \leq \sqrt{N}$, hence

$$Q_2(\text{search}) \geq \frac{W_0 - W_T}{\sqrt{N}} \geq \frac{\sqrt{N}}{2}$$

Searching and Sorting

• Searching N unordered elements:

Quantum, constant error: \sqrt{N} queries

Error ε : $\sqrt{N\log(1/\varepsilon)}$ queries

Error 0: N queries

• Searching N ordered elements:

Classically: $\log N$ queries

Quantum: $\frac{1}{\pi \log e} \log N \le Q_E \le 0.526 \log N$

(Høyer, Neerbek, Shi, weighted adversary

method; upper bound by Farhi et al.)

• Sorting *N* elements:

Classically: $N \log N + O(N)$ comparisons

Quantum: $\frac{1}{2\pi \log e} N \log N \le Q_E \le 0.526 \ N \log N$

Some Open Problems

• Main question is still:

Which problems admit quantum speed-up?

(which promises give exponential speed-up?)

• Tighten $D(f) \leq Q_2(f)^6$ bounds

Conjecture: $D(f) \leq Q_2(f)^2$ (Grover)

Relation polynomials ←⇒ adversary?

If You Want to Know More...

Polynomial method:

- Classical: Nisan and Szegedy, On the degree of Boolean functions as real polynomials, STOC 92.
- Quantum: Beals, Buhrman, Cleve, Mosca, de Wolf,
 Quantum lower bounds by polynomials, FOCS 98.
- Survey: Buhrman and de Wolf, Complexity measures and decision tree complexity: A survey. Theoretical Computer Science 2001 (?)

Quantum adversary method:

- Original: Ambainis, Quantum lower bounds by quantum arguments, STOC 2000.
- Weighted version: Høyer, Neerbek, Shi, Quantum complexities of ordered searching, sorting, and element distinctness, ICALP 2001.