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Why Lower Bounds?

e Main question for a computer scientist:

Which problems admit quantum speed-up??

e Equivalent question:

Which problems don't?

e \We need lower bounds to answer this:
provable limits on the power of quantum
computers



Overview

1. Black-box computation

2. Early lower bounds

3. Two general methods:
e polynomials

e quantum adversary

4. Complexity of searching & sorting

5. Open problems



Black-Box Computation

e We want to compute f: {0,1} — {0,1}
of input z = (z1,...,zxN)

e Input can only be accessed via queries:

e Unitary transformation: Oli, 1) = |i, 1 — x;)

e (QC can query superposition:
(\/_ZMO) \/_Z|z:cz

e Minimize the number of queries used



Example: Deutsch-Jozsa

o x = (x1,...,zn), N = 2%, either
(1) all x; are 0 (constant), or
(2) exactly half of the x; are 0 (balanced)

e Classically: %—l— 1 queries needed

e Quantum: 1 query suffices

7 < > measure




Deutsch-Jozsa (continued)

After first Hadamard:

1 . 1 1
= i) | | —=10) — —=[1)
V2 ic{0,1}n (\/5 V2 )

After query:

1 . 1 1
= > (=1)%a) | (==l0) — —==[1) ).
V2 ic{0.1}7 (\/5 V2 )

After second Hadamard (ignore last qubit):

1 o1 T
= ) (DT = > (1"
\/Q_z'e{o,l}n \/Q_je{o,l}n

Amplitude of |[5) = |0...0) is

1 z: | 1 if constant
on Z (=1)™ _{ 0 if balanced
i€{0,1}"
Measurement gives correct answer



Definition of Black-Box Complexities

e D(f): # queries for deterministic algorithm
R>(f): # queries for bounded-error algo
(error probability < 1/3 for all x)

e A T-query quantum algorithm:

00— — ... — —— measure 0/1

e Qr(f): # queries for exact quantum algo
Q->(f): # queries for bounded-error quan-
tum algo (error < 1/3 for all x)



Most Quantum Algorithms are Black-Box

e Deutsch-Jozsa:
Qp(DJ)=1vs. D(DJ) =5 +1

e Shor's period-finding (implies factoring):
= (m(0),..., m(N)), IrVi m(:) = m(i+1r)
Q-(find-r) = O(1) vs. Ry(find-r) > N1/3

e Grover search:
r = (x1,...,xN), find i s.t. z; =1
Q->(search) ~ v/ N vs. Ro(search) ~ N

e Also: Simon, counting, ordered search,. ..

e Not: communication complexity, automata



Early Lower Bounds

e Jozsa (91): what is the power of 1 query?
Answer: not much

e BBBV (93-97): v N lower bound on search
(pre-dates Grover's algorithm!)

Their idea (hybrid method):

Examine T-query algo on z = (0,...,0).
At most T2 variables influence outcome.
But all N inputs are relevant

= T2>N=T2>+N



Method 1: Polynomials (BBCMW 98)

e Boolean function f: {0,1}" — {0,1}
polynomial p: RN - R

e p represents f if f(z) = p(x) Vz
deg(f) minimum degree of such p

e p approximates f if |f(x) —p(x)| < 1/3 Vx
deg(f) minimum degree of such p

e Example:
x1 + xo — x125 represents OR(x1, o)

221 + 5z approximates OR(z1,z2)

e Polynomial lower bounds:

deg(f) deg(f)
2 2

< Qg(f) and

< Q2(f)



Amplitudes Are Polynomials

e Final state after T" queries depends on x:

¢) = > ar(@)k)

ke{0,1}m

e o (x) are polynomials of degree < T, proof:
1. Initially (T'=0) the «aj are constants
2. O permutes [i,0) and |z,1) iff z; = 1:

O (al$,0) + B3, 1)) =

(a(1l — z;) + Bx;)|i,0)+(ax; + B(1 — z;))]4, 1)
thus O adds 1 to the degree

3. Amplitudes after U; are linear sums of
old amplitudes, cannot increase degree



Lower Bounds from Degrees

e Probability of output 1:
Pz)= Y |a@)

k starts with 1
P(xz) is a polynomial of degree < 2T

e For exact algorithms, P(z) = f(xz) Vx:

deg(f) < degree of P < 2T

p—

) < Quip)

deg(f)
2

e For bounded-error:

< Q2(f)



Examples of Degree Lower Bounds

e deg(OR) = N = Qr(OR) > N/2
No speed-up for error-less search!

¢ deg(OR) = v'N = Q2(OR) > v/N/2
BBBV's lower bound on Grover search!

e deg(PARITY) = N = Q»(PARITY) > N/2
No significant speed-up for parity!
(independently by Farhi et al., 98)

e deg(f) ~ N for most f (Ambainis)
No significant speed-up for most f!



D(f) and Q>(f) Polynomially Related
e Block sensitivity:
measures influence of changes in z on f(x)
— /bs(f) < deg(f) (Nisan & Szegedy 94)

— D(f) < bs(f)3 for total f (BBCMW 98)
(i.e., no promise on N-bit input)

— Hence D(f) < Q»(f)® for all total f

e For all total functions in the black-model:

quantum bounded-error computation
IS at most polynomially better than
classical deterministic computation



Method 2: Adversary (Ambainis)

e Adversary method:
If A computes f, then it must distinguish
inputs x and y whenever f(x) = f(y);
otherwise correct output of A on x implies
the same (now incorrect) output on y.

e Distinguishing many (z,y)-pairs is hard

e Gives good bounds for some problems:
— +/N for quantum search
— v/ N for AND-OR tree

— /N for inverting a permutation



Idea of the Method

e Let X and Y be sets of inputs such that
f(x) # f(y) whenever z € X andyeY

o Let |¢%) be state of the algorithm after j
queries on input z, then [(pI|yT)| < 3

(else measurement can't distinguish them)

e w; Y S (i)

r€EX,ye€Y
e Initially: Wy = |X]| - |Y]
o At the end: Wr < |X|-|Y]|
e If we can show |[W; — W, 1| < B, then

1
Wo —Wr _ 51X Y]
Q > >
2(f) 2 B - B




Example: Search

¢ X={(O,,O)}
Y ={e;|1<i<N}

e w; Y S (il

reX,yeY
e Initially: Wo = |X|-|Y|=N
. 1 _ N
e At the end: Wy < 5[X| Y] =5

e Ambainis: |W; — W,11| < VN, hence

— N
Q->(search) > Wo = Wr > \/—_

VN T 2




Searching and Sorting

e Searching N unordered elements:

Quantum, constant error: /NN queries
Error ¢: \/Nlog(l/s) queries
Error O: N queries

e Searching N ordered elements:

Classically: IogN queries
Quantum: log N < Qgr <0.526log N

Ioge
(Hgyer, Neerbek, Shi, weighted adversary
method; upper bound by Farhi et al.)

e Sorting N elements:

Classically: N Iog N 4+ O(N) comparisons

Quantum: 5 Iog NIlogN < Qg <0.526 Nlog N



Some Open Problems

e Main question is still:
Which problems admit quantum speed-up?

(which promises give exponential speed-up?)

e Tighten D(f) < Q>(f)® bounds

Conjecture: D(f) < Q>(f)? (Grover)

e Relation polynomials «<— adversary?



If You Want to Know More...

Polynomial method:

e Classical: Nisan and Szegedy, On the degree of
Boolean functions as real polynomials, STOC 92.

e Quantum: Beals, Buhrman, Cleve, Mosca, de Wolf,
Quantum lower bounds by polynomials, FOCS 98.

e Survey: Buhrman and de Wolf, Complexity mea-
sures and decision tree complexity: A survey. The-
oretical Computer Science 2001 (?)

Quantum adversary method:

e Original: Ambainis, Quantum lower bounds by quan-
tum arguments, STOC 2000.

e \Weighted version: Hgyer, Neerbek, Shi, Quantum
complexities of ordered searching, sorting, and ele-
ment distinctness, ICALP 2001.



