
Continuity, Metric Spaces and Topologies

1 Foundations on R

This lecture is based largely on drawing analogies of important properties about real numbers to
a more general setting. To this end, we will begin with a few observations that will motivate the
forthcoming theory. One thinks of R intuitively as a ”number line”. If we were to plot the integers
on this number line then we would be subdividing this number line into line segments, each of which
of the form [n, n + 1), where n ∈ Z. It is not difficult to see that the points in [n, n + 1) are in
bijection with the points of [0, 1) through the map x 7→ x−n, so R is in fact a union of a number of
copies of [0, 1), where by a copy, we mean the image of a bijective map. This is significant because
if we are interested in local information about R, i.e., at the level of individual points and the points
surrounding them, we can restrict to a finite interval.
The closed interval [0, 1] is an ”uninterrupted” line segment of length 1 between two points 0 and 1,
fixed in space (we view 0 and 1 as having some concrete existence, and define a system of distance
by defining something as having length in multiples of the distance between 0 and 1). We will treat
[0, 1] as an entity and make more rigorous this property of being uninterrupted presently. Certain
elements of [0, 1] are distinguished because they have concrete meaning. Any rational number p

q
,

for instance, corresponds to the ratio of two positive integers p and q (for instance, to describe the
relative sizes of a set of p objects and a set of q objects). We can be more precise.

Definition 1.1. Let S, T be sets. The (Cartesian) product set S × T is the set of all ordered pairs
(s, t), where s ∈ S and t ∈ T . When S = T , we write S2 := S × S.
An equivalence relation on a set S is a subset R ⊆ S × S that satisfies the following properties:
i) (a, a) ∈ R for every a ∈ S (reflexivity); ii) if (a, b) ∈ R then (b, a) ∈ R (symmetry); iii) if
(a, b), (b, c) ∈ R then (a, c) ∈ R (transitivity).
We write a ∼ b to imply that (a, b) ∈ R, and also refer (by abuse of notation) to the relation ∼
between elements as an equivalence relation. We say that two elements a, b ∈ S are equivalent with
respect ∼ if a ∼ b, and refer to the equivalence class of an element a ∈ S as the set of all b ∈ S
such that a ∼ b.

In general, we will not refer explicitly to the set R implicit in the above definition; instead, we will
only allude to its existence through statements like a ∼ b, where ∼ is understood to refer to R.

Examples 1.2. a) Let S be a set. The simplest example of an equivalence relation is equality of
elements S. Clearly, a = a; if a = b then b = a; and if a = b and b = c then we must have a = c.
In this case, we can state that a ∼ b if and only if a = b, and the corresponding subset of the
product S×S is the diagonal subset, i.e., {(s, s) : s ∈ S}. The equivalence classes of any a ∈ S with
respect to this relation is the singleton {a}. b) An important example for our purposes is provided
by letting S = N× N and setting R := {((m1, n1), (m2, n2)) ∈ S × S : m1n2 −m2n1 = 0}. Writing
aj to denote the pair (mj, nj), where j = 1 or 2, it is clear that aj ∼ aj, since mjnj −mjnj = 0,
and since 0 = −0, a1 ∼ a2 implies that a2 ∼ a1. Finally, if a3 := (m3, n3) then observe that

m2(m3n1−m1n3) = m3m2n1−(m3m1n2−m3m1n2)−m2m1n3 = m3(m2n1−n2m1)−m1(m2n3−m3n2) = 0.

Since m2 6= 0, m3n1−n3m1 = 0. Thus, a1 ∼ a3, and ∼, as defined in this example, is an equivalence
relation.
Observe that a

b
= c

d
, where a, b, c, d are positive integers, if and only if ad − bc = 0, in other

words, that (a, b) ∼ (c, d). Setting t := gcd(a, b), we observe that if a = a′t and b = b′t, where
gcd(a′, b′) = 1 then t(a′d − b′c) = 0. Again, t 6= 0, so this implies that (a′, b′) ∼ (c, d) ∼ (a, b);
thus, by transitivity, (a, b) and (a′, b′) are equivalent. This shows that any two equal fractions are
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equivalent, and moreover, are equivalent to a corresponding fraction in lowest terms. This might
be obvious, but it provides our more rigorous formulation of rationals.

Definition 1.3. A positive rational number is an equivalence class of pairs of integers (a, b) ∈ N2

with respect to the relation from the previous example. A rational number is either 0, a positive
rational number or the product of a positive rational number and −1. We denote by Q its set.

Remark 1.4. We will refer to a rational number as the unique element of its equivalence that is
in lowest terms, i.e., (a, b) such that gcd(a, b) = 1, as we considered in b). Thus, according to this
convention, the numerator and denominator refer to the coprime elements a and b, respectively.

Let N ∈ N0. We denote by F(N) the set of all distinct p
q
∈ Q such that 1 ≤ p ≤ N . We call this

set the Farey sequence of order N . We leave the following exercises to the reader.

Exercise 1.1. Fix N ∈ N and let a
b
, c
d
∈ F(N), a

b
< c

d
.

a) Show that Q ∩ [0, 1] =
⋃
N≥1F(N).

b) Prove the mediant property: a
b
< a+c

b+d
< c

d
. Deduce that if a

b
and c

d
are consecutive elements in

F(N) then b+ d > N .
c) Prove that a

b
and c

d
are consecutive in F(N) if, and only if, bc − ad = 1. Deduce from this and

the previous exercise that∣∣∣a
b
− c

d

∣∣∣ ≤ min

(
1

b(N + 1− b)
,

1

d(N + 1− d)

)
<

2

N + 1
.

d) Though, strictly speaking, unrelated to the task at hand, we provide a challenging, number
theoretical interlude for the reader about Farey sequences, namely giving a bound on the number
of elements in F(N). The reader may want to return to this problem after having studied the next
section after this one. i) Prove that 1 <

∑
n≥1

1
n2 < 2.

ii) Let φ(n) := {1 ≤ a ≤ n : gcd(a, n) = 1}. Show that |F(N)| =
∑

n≤N φ(n).

iii) Show that φ(pk) = pk − pk−1 whenever p is a prime and k ≥ 1. Also, show that φ(pkql) =

φ(pk)φ(ql). Deduce that φ(mn) = φ(m)φ(n) whenever gcd(m,n) = 1, and that φ(n) = n
∏

p|n

(
1− 1

p

)
.

iv) Let µ(n) be the Möbius function, defined by µ(n) = 0 if n is divisible by the square of any prime,
and otherwise, µ(n) = (−1)k, where k is the number of distinct prime factors of n. Show (relating
divisors of integers without square factors to subsets of the set of primes dividing n and using the
principle of inclusion/exclusion) that

∑
d|n µ(d) = 0 if n > 1, and µ(1) = 1. Using iii), prove that

φ(n) =
∑

d|n
µ(d)
d

, where the sum runs through all of the divisors of n.

v) Observe that
∣∣∣∑n≥1

µ(n)
n2

∣∣∣ ≤∑n≥1
1
n2 . Using iv), show that

(∑
n≥1

µ(n)
n2

) (∑
n≥1

1
n2

)
= 1. Deduce

from this and the rest of the exercise that 1
4
N2 < |F(N)| < 1

2
N2. Note that the non-triviality in

this exercise is that |F(N)| > 1
2
N2. In fact, |F(N)| is about 3

π2N
2, the improved constant coming

from an exact value for the sum in i).

Exercise a) shows that we recover all rational numbers in [0, 1] by considering elements of Farey
sequences. Exercises b) and c) together show that by taking mediants of consecutive elements
in a Farey sequence of a given order, we produce new rational numbers that lie in gaps of the
initial Farey sequence, and moreover, that these gaps decrease in size at least as quickly as 2

N
.

Hence, by iteratively taking mediants, we get shorter and shorter gaps between rational numbers.
Unfortunately, there is something going on between these gaps.

Exercise 1.2. Prove that if n is not a square,
√
n, 1√

n
/∈ Q.

As an illustration of important concepts in Mathematical analysis that we will treat systematically
later, we can approach what is occurring in these gaps using the following concept.
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Definition 1.5. Let S be a set. A sequence of elements in S is a function f : N0 → S. We will
also refer to a set {an}n defined by an := f(n), as a sequence.

Examples 1.6. a) A trivial example of an integer-valued sequence is an = n for n ≥ 0. Less trivial,
but well-known, is the Fibonacci sequence which assigns to n a number an satisfying an = an−1+an−2
for n ≥ 2 (which, of course, requires an initial condition on a0 and a1, namely a0 = a1 = 1).

b) Let N ∈ N and let r := p
q
∈ F(N)\{1}. Let r′ := p′

q′
be the smallest element in F(N) larger than

p
q
. Define med(r, r′) := p+p′

q+q′
to be the mediant of r and r′. We may define a sequence as follows.

Take a0 := r, a1 := r′ and for n ≥ 2, an := med(an−1, an−2). Thus, {an}n ⊂ Q whose elements, by
our previous remarks, approach one another.

c) Let α ∈ R. We define a0 := bαc and α1 := α − a0. For n ≥ 1, define an :=
⌊

1
αn

⌋
and let

αn+1 := αn − an. The sequence {an}n is called the continued fraction expansion of α, and the an
are called partial quotients of α. Observe that αn+1 := { 1

αn
} for each n ∈ N. This is called the

Gauss map.

Recall the following properties of the absolute value.

Exercise 1.3. Let x, y ∈ R. Check that: i) |x| = 0 if, and only if, x = 0; ii) |xy| = |x||y|; iii)
|x+y| ≤ |x|+ |y|. Clearly, iii) implies that |x+y| ≤ 2 max |x|, |y|. Property iii) is called the triangle
inequality. A function that satisfies these iii) properties is called a generalized absolute value.
Also, prove the following equivalent form of the triangle inequality: ||x| − |y|| ≤ |x− y|.
As a side note, suppose ‖‖ is a function on R that satisfies i) and ii) above, and ‖x + y‖ ≤
max{‖x‖, ‖y‖} for any x, y ∈ R. Prove by induction that ‖n‖ ≤ ‖1‖ for any integer n, evaluate, in
two ways, ‖(x+ 1)n‖, where x ∈ Q. (We will see this absolute value come up later on. In contrast
to the regular absolute value, which is called Archimedean, this type of absolute value is called
non-Archimedean.)

Example b), above, is an important motivator for the following definition.

Definition 1.7. A sequence {an} ⊂ R is called a Cauchy sequence if for any ε > 0 there is an
M = M(ε) ∈ N such that for any n,m ≥M , |an − am| < ε.

Let us observe a few consequences of this definition.

Proposition 1.8. a) Let N ∈ N0 and bn := aN+n for each n ≥ 0. Then {bn}n is Cauchy if, and
only if, {an}n is Cauchy.
b) If {an}n is Cauchy then there is some B > 0 such that for all n ∈ N, |an| ≤ B, i.e., Cauchy
sequences are bounded.
c) Let {an}n and {bn}n be Cauchy. Then {cn}n and {dn} are Cauchy, where cn := an + bn and
dn := anbn.

Part a) implies that we only care about the tail behaviour of Cauchy sequences, i.e., what occurs
for elements with sufficiently large index. We’ll refer to the sequence {bn}n in a) as a truncation of
{an}n, since we lopped off the beginning of it.

Proof. a) If {an}n is Cauchy then by choosing M ′(ε) := M(ε) − N in the definition, we have
|bm − bn| = |aN+m − aN+n| < ε whenever m,n ≥M ′ (so that N + n,N +m ≥M ′). Conversely, we
take M ′(ε) = M(ε) +N , and the same argument holds.
b) By the Cauchy property, we can choose M ∈ N such that for n,m ≥M , |an−am| < 1. Therefore,
if we let B′ := max{|a0|, . . . , |aM |} and B := B′ + 1, then clearly, |an| ≤ B′ < B when 0 ≤ n ≤M ,
and when n > M , by the triangle inequality, |an| ≤ |an − aM |+ |aM | ≤ B′ + 1 = B.
c) By the triangle inequality, |cn − cm| ≤ |an − am|+ |bn − bm|. Thus, if M1 and M2 are such that,
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respectively, n,m ≥ M1 implies that |an − am| < ε/2 and n,m ≥ M2 implies that |bn − bm| < ε/2
then |cn − cm| < ε whenever n,m ≥ max(M1,M2).
For the second statement, we have the identity

|dn − dm| = |(anbn − anbm) + (anbm − ambm)| ≤ |an||bn − bm|+ |bm||an − am|.

By b), we can find A,B > 0 such that |an| ≤ A and |bn| ≤ B for all n ∈ N. Hence, if we choose
M ∈ N large enough so that for n,m ≥ M both |an − am| < ε

2(A+1)
and |bn − bm| < ε

2(B+1)
(i.e.,

choosing M to be the larger of M1 and M2 satisfying the bound for {an}n and {bn}n, respectively,
then we have |dn − dm| < A ε

2(A+1)
+B ε

2(B+1)
≤ ε, as required.

Intuitively, one might suggest that the ”uninterrupted” property of the real numbers is manifest
in the fact that when elements are sufficiently close together, there is some real number between
them to which they mutually get close. In effect, we can consider real numbers as representing
Cauchy sequences in a similar sense as how rational numbers represent equivalence classes of pairs
of integers.
Let Q be the set of all Cauchy sequences of rational numbers. We define an equivalence relation
on Q by saying that {an} ∼ {bn} if for each ε > 0 there is some N ∈ N such that for n ≥ N ,
|an − bn| < ε. Thus, equivalent sequences are eventually close to one another. According to this
definition, a Cauchy sequence {an} and its truncations are equivalent. Notice, as well, that any
eventually constant sequence, i.e., such that an = a for all n ≥ N and N some positive integer, is
also Cauchy, and is equivalent to the constant sequence (a, a, . . .). Thus, we can identify rational
numbers with Cauchy sequences by representing them by a constant sequence. At last, we can give
a precise definition of R.

Definition 1.9. The set of real numbers is the set of all equivalence classes in Q with respect to
the equivalence relation given above.

This is not a satisfactory definition because we relate to elements of R as if they were individual
numbers, not equivalence classes. Let us identify the equivalence class of {an}n ∈ Q with a number
a such that for every ε > 0 there is some M ∈ N such that for any n ≥M , |an − a| < ε. Note that
this is well-defined because if {an}n and {bn} are equivalent, they will both be uniformly close to a
for sufficiently large N in the sense described earlier. This construction closes the gaps that were
made evident by example b) above. Note also that both statements in c) of Proposition 1.8 allude
to the fact that R is closed under multiplication and addition. With the following exercise, this will
show that R is also closed under division by non-zero real numbers.

Exercise 1.4. Let {bn}n be a Cauchy sequence that is not equivalent to the zero sequence. Show
that { 1

bn
}n is also Cauchy. Deduce that if {an}n is also Cauchy then so is {an

bn
}n. (Hint: the

argument invokes b) and c) of Proposition 1.8.)

By virtue of our identification of Q with the constant Cauchy sequences in R, it follows, consistent
with out intuition, that Q ⊆ R. It might also seem, because real numbers, by construction, are
arbitrarily close to rational numbers, the rational numbers should represent a large proportion, in
some sense (however vague), of the reals. We can illustrate this intuition using finite sets of integers,
for instance. The smallest gap between integers is 1, and therefore if F ⊆ {1, . . . , N} is such that
any two consecutive elements have a gap smaller than or equal to 2 between them then |F | ≥ 1

2
N ,

or equivalently, that the ratio of the size of F to its superset {1, . . . , N} is 1
2
. Unfortunately, this

sort of intuition is meaningless when we deal with infinite sets. This motivates the following sets of
definitions, some of which may be familiar to the reader.

Definition 1.10. Let A,B be sets and let f : A → B be a map. We say that f is injective (or
1-1) if, whenever f(a1) = f(a2) with a1, a2 ∈ A, a1 = a2. We say that f is surjective (or onto) if,
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for each b ∈ B there is (at least) an a ∈ A such that f(a) = b. We say that f is bijective if f is
injective and surjective.
If A,B are sets such that there exists an injective map f : A → B then we write |A| ≤ |B|. If
a surjective map exists between them then we write |A| ≥ |B|. If a bijective map exists between
them then we write |A| = |B|, and in this case, we say that the sets A and B are equicardinal.

Among finite sets, we can easily determine which sets are equicardinal. We caution the reader that
we will be working in an abstract setting in which no explicit characterization of elements of our
sets will be given. If he/she so chooses, he/she may as well think of these as real numbers until
further notice.

Exercise 1.5. Given a collection C of sets, check that ≤ is a reflexive and transitive relation, i.e.,
that |A| ≤ |A| and if |A| ≤ |B| and |B| ≤ |C| then |A| ≤ |C|. Note that it is evidently not an
equivalence relation, as the following proposition already shows for finite sets.

Proposition 1.11. Let A,B be finite sets containing m and n distinct elements, respectively. Then
A and B are equicardinal if, and only if m = n.

Proof. Write A := {a1, . . . , am} and B := {b1, . . . , bn}. If m = n then the map f : A→ B given by
f(aj) = bj is clearly a surjection, as each bj is produced this way. Now suppose f were not injective.
Let ri denote the number of elements in A that map to bi. By definition, f is injective if, and only
if, each ri = 1. It is easy to see that

∑n
i=1 ri = m, since f acts on every element of A. On the

other hand, since each ri is a non-negative integer and f is surjective, each ri is at least one, so we
have m ≥

∑n
i=1 1 = n, with equality if, and only if, ri = 1 for each i. Since m = n, it must be the

case that ri = 1 for each i and hence f is also injective. Thus, f is a bijection and A and B are
equicardinal.
Conversely, suppose, without loss of generality, that m < n but A and B are equicardinal (otherwise,
by symmetry, we can change the roles of A and B). By definition, there is a map f : A → B that
is surjective. Thus, each b ∈ B belongs to f(A). However, f(A) = {f(a1), . . . , f(am)} has only at
most m < n elements. If f is surjective, on the other hand, each bi must be represented in f(A),
so f(A) must have at least n elements, a contradiction. Thus m = n.

Infinite sets are bizarre when we use the finitary intuition implicit in the proposition above. For
example, we should expect that Z should have more (again, in some sense) elements than N because
it contains essentially a positive and a negative copy of N. All the more so, Q should have more
elements than Z and thus than N, as Q corresponds to pairs of integers, rather than single one, in
which either member can change (up to the coprimality condition, of course). However, the next
result suggests otherwise.

Proposition 1.12. i) Suppose A ⊆ B. Then |A| ≤ |B|.
ii) Suppose there is a surjection B → A. Then there is an injection A → B. iii) There exists an
injective map f : N→ Q and an injective map g : Q→ N.
iv) If A ⊂ N is infinite then there is an injective map N→ A.

Part iii) is significant because of the following important theorem, which is beyond the scope of
these notes (I give a proof in the appendix).
(For those that are counting or that are aware of these things, our proof of ii) requires the Axiom
of Choice. As far as I know, there is no way to prove it otherwise.)

Theorem 1.13 (Cantor-Schröder-Bernstein). Let A and B be sets such that |A| ≤ |B| and |B| ≤
|A|. Then |A| = |B|. In other words, if there is an injection in one direction and a second injection
in the opposite direction between two sets (these maps being not necessarily inverses of one another)
then A and B are equicardinal.
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The finite case of this theorem is essentially the content of the earlier proposition. But as the proof
of Proposition 1.12 might suggest, the infinite case is far from intuitive.

Proof of Proposition 1.12. i) The first statement is trivial: the identity map sends an element a ∈ A
to the same element a ∈ B. If f(a) = f(a′) then a = a′, as claimed.
ii) Let φ : B → A be the surjection. Define a map ψ : A → B by assigning to each a a single
element in φ−1(a) := {b ∈ B : φ(b) = a}. If ψ(a) = ψ(a′) = b then φ(b) = a and φ(b) = a′ by
construction. Thus, a = a′ and φ is indeed injective.
iii) The first injective map is trivial given i).
The second injective map is also not hard. Indeed, for a

b
∈ Q let u = 1 if a

b
< 0 and u = 0 otherwise.

Let g(a
b
) = 2u3a5b. By unique factorization, if g(a

b
) = g(a

′

b′
) then 2u3a5b = 2u

′
3a

′
5b

′
if, and only if,

u = u′, a = a′ and b = b′, whence a
b

= a′

b′
.

iv) Order the elements of A according to size and for each a ∈ A let F (a) := {a′ ∈ A : a′ ≤ a}.
Hence, F (a) consists of all of the elements of A that are less than or equal to a. Define φ : N→ A
such that φ(n) := a, where F (a) is equicardinal to {1, . . . , n}. Note that this is well-defined because
A is infinite, so there are at least n elements in A for each n ∈ N. Suppose a, a′ ∈ A. If φ(a) = φ(a′)
then |F (a)| = |{1, . . . , n}| = |F (a′)|. By the Proposition 1.11, this means that F (a′) and F (a)
contain the same number of elements. If a < a′ and b ∈ F (a) then b ≤ a < a′, hence b ∈ F (a′),
so that F (a) ⊂ F (a′). On the other hand, a′ /∈ F (a), so |F (a′)\F (a)| ≥ 1. This contradicts the
fact that F (a′) and F (a) have the same number of elements. Symmetrically, a > a′ gives the same
contradiction. Thus, a = a′ and φ is an injection. Therefore, |N| ≤ |A|.

By virtue of N ⊂ Z ⊂ Q and |N| = |Q|, it follows that there is an injective map Q→ Z by composing
the injection from Proposition 1.12iii) with the trivial injection from i). Thus, |Q| = |Z|, as well.
Since we have already demonstrated that there is some common class of sets, namely N,Z,Q and
any infinite subset of these, thus far, that are equicardinal, we may as well give a name to this class.

Definition 1.14. A set S is countable if |S| = |N|, and is called at most countable if it is either
countable or finite. If it is not at most countable, it is called uncountable.
If S is finite, we say that it has cardinality n, and we write |S| = n if there is a bijective map between
S and {1, . . . , n}. If S is countable, we say that is has countable cardinality, and we express this as
|S| = ℵ0.

By convention, we say that the empty set is finite and has cardinality zero.
Thus, N,Z and Q are all countable. Besides those that we’ve considered thus far, there are ”many”
other countable sets, as we have operations that produce countable sets from other countable sets.

Proposition 1.15. i) If A and B are countable then A× B is countable. In particular, any finite
product of countable sets is countable.
ii) If {Ai}i≥1 is a sequence of countable sets then A :=

⋃
i≥1Ai is countable.

Note that from Proposition 1.12i) it is already clear that the intersection of any number of count-
able sets is at most countable (it might be empty, as the example Ai := {i, i+1, . . .}, for i ≥ 1, shows.

Proof. i) Let φ : A→ N and ψB : B → N be injections implied by the countability property and let
g : A× B → N be defined by g(a, b) := 2φ(a)3ψ(b). This is injective by unique factorization, since if
g(a, b) = g(a′, b′) then φ(a) = φ(a′) and ψ(b) = ψ(b′), and since φ and ψ are both injective, a = a′

and b = b′. Thus, |A × B| ≤ |N|. On the other hand, since |N| = |A| ≤ |A × B| by fixing b0 ∈ B
and letting h(a) := (a, b0) ∈ A × B (which is easily seen to be injective), by the Cantor-Schroder-
Bernstein theorem, |A × B| = |N|. We leave the claim about finite products of countable sets to
the reader (noting that (A1 × · · ·An−1)× An = A1 × · · · × An).
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ii) Since there are infinitely many primes, the set of primes is countable, and we can set Π : N→ P
to be a bijection. Without loss of generality, we may assume that the sets Ai are disjoint (otherwise,

we can set B1 := A1 and for j ≥ 1, set Bj+1 := Aj+1\
(⋃j

i=1Bi

)
, and the union of the Bj is also

A). Let φi : Ai → N be the injection implied by countability for each of the Ai and let φ : A → N
be defined by φ(a) = Π(i)φi(a), where a ∈ Ai. Again, by unique factorization, φ(a) = φ(a′) if, and
only if, a, a′ ∈ Ai for the same index i, and moreover, φi(a) = φi(a

′), which, by injectivity, implies
that a = a′. Thus, φ is an injection, and |A| ≤ |N|. Since A1 ⊆ A and thus |N| = |A1| ≤ |A|, by
the Cantor-Schroder-Bernstein theorem, |A| = |N|.

Remark 1.16. Note that in all of the above proofs, we only used the existence of an injection from
a set A to N, not a bijection. Therefore, in all of the statements above we may replace countable
with at most countable.

Exercise 1.6. Recall that a set A is said to be countable if there is a bijection between A and N,
and uncountable otherwise.
i) Prove that the set of all finite subsets of a countable set is countable.
ii) Deduce from i) that the set of real numbers that are roots of an integer polynomial is countable.
This will be of interest in a later set of lectures.
iii) Prove that if |A| = |B| then if P(A) denotes the power set of A (the set of all subsets of A) then
|P(A)| = |P(B)|, and hence deduce that given any countable set A, P(A) is uncountable.
iv) Let x, y ∈ (0, 1), and write their decimal expansions x =

∑
j≥1 aj10−j and y =

∑
j≥1 bj10−j. Let

f(x, y) := 0.a1b1a2b2 . . .. Prove that f is an injective map. Also, prove that if (0, 1) is uncountable
then (a, b) is uncountable. Finally, observe that tan−1 : R → (−π/2, π/2) is a bijection, so deduce
from this, or otherwise, that R2 and hence Rn are both equicardinal to R.

So we have lots of countable sets. Is R countable? As a simple model, observe that every number
can be written in a binary expansion. A binary expansion is almost, but not quite unique, because
we can always replace a finite binary expansion, which is a rational number, with an infinite one in
which a 1 at the end is replaced with an infinite sequence of 1’s following a zero. For instance, in
binary, the number 1 and the number 0.111 · · · are equivalent because they are arbitrary close to
one another (a fact we make more explicit in the next section, in which the partial sums are partial
binary expansions). In any case, up to this ambiguity, we can describe real numbers uniquely in
terms of the binary sequence corresponding to the digits in its binary expansion. In other words,
there is (at least) a surjection from R to the infinite product set {0, 1}N.
Note, however, that Proposition 1.15 only deals with finite products of at most countable sets
(see the remark), while {0, 1}N is an infinite product. As Cantor showed, this makes a infinity of
difference (pun intended).

Theorem 1.17 (Cantor). The set {0, 1}N is uncountable. In particular, R and the set of irrational
numbers are both uncountable.

Proof. We proceed according to Cantor’s method. Let X := {0, 1}N and suppose |X| = |N|, so
we can enumerate the real numbers {r1, r2, . . .} (this is the same thing as saying that we have a
bijection n 7→ rn). We label the nth element of the sequence rm as rmn. We construct a sequence
a := {an}n ∈ X such that if an := 1 − rnn. Since rnn ∈ {0, 1}, so is an, and {an}n is well-defined.
By assumption, a ∈ X so it is equal to some rj. On the other hand, for any j, aj 6= rjj, which
means that a 6= rj. This contradiction implies that X and N are not equicardinal. At the very
least, we have an injection N → X by writing the integer n in terms of its binary expansion (this
time to the left of the decimal point) and appending an infinite sequence of zeros after it. This is
easily seen to be injective, as the reader may verify.
Now suppose R were countable. We already established that R→ X is a surjection. If |N| = |R| then
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we should have a surjection N→ R→ X, and hence |X| ≤ |N| (note that we are using Proposition
1.11 here). But by what we just showed, |N| ≤ |X|, so by Cantor-Schroder-Bernstein, |X| = |N|,
which contradicts the fact that X and N are not equicardinal. Thus, R is also uncountable.
Lastly, since R is the disjoint union of Q, which is countable, and the set of irrational numbers, and
R itself is uncountable, the set of irrational numbers can not be countable, for by using Proposition
1.15ii) with A1 := Q and Aj := R\Q for each j ≥ 2, R =

⋃
j≥1Aj would then be countable, a

contradiction.

So in fact, the gaps ”between” rational numbers contain more information than the rationals them-
selves. If we now reassess our construction of real numbers, this seems plausible: the rationals,
as Cauchy sequences, were equivalent to constant sequences. The set of non-constant sequences
obviously has the potential to be much larger. All this to say that the math you may have learned
earlier did not tell the whole story.

Remark 1.18. The reader is cautioned that much of the theory developed in this section belongs
to the realm of Set theory, which is, in essence, at the very foundation of Mathematics and its
point of contact with Philosophy. Mathematics, particularly as it pertains to infinitary objects,
was developed based on certain self-evident truths about finitary sets. For example, the principle
of Mathematical Induction implies that if we have a set and a rule for adjoining an element to it
then we can adjoin elements arbitrarily many times. From this we abstract the idea of an infinite
set. Strictly speaking, this means that the set contains at least N elements, for any positive integer
N , i.e., that it is the result of adjoining N elements for any N , and that the first M elements, for
M < N , correspond to the first M elements of the set when it only contained N elements. As we
just observed, there are some subtleties involved in infinite sets, and therefore there is controversy
over what sorts of abstractions and axioms should be foundational. We won’t go any further with
this, but if the reader has interest for such things, he/she may find my opinions on my webpage
(this essay coming soon).

Appendix: Proof of the Cantor-Schröder-Bernstein Theorem

Recall that the C-S-B theorem allowed us to conclude, from the existence of injections from a set
A to a set B and from B to A that A and B are equicardinal. We prove this presently.
Let f : A → B and g : B → A be the injections in question. Of course, f is a bijection onto
f(A) ⊂ B and g is a bijection from B onto g(B). We will extend f to a surjective map onto all
of B, while maintaining injectivity. Observe first that if a ∈ g(B) then g−1(a) is well defined, and
gives a map on all of g(B) that is surjective onto B. If a ∈ A\g(B) then b = f(a) ∈ B, and thus
b. We define two sequences as follows. Let Y0 := A\g(B), and for j ≥ 1 let Yj := g(f(Yj−1)). Note
that g−1 is well-defined on Yj. If Z :=

⋃∞
j=0 Yj then Z ⊂ A. Intuitively, Z is built out of a set that

g−1 misses, and so it is somewhat natural to consider a map that has characteristics of f on this
set and of g−1 outside of this set. We will prove that the map given by h(x) := f(x) when x ∈ Z
and h(x) = g−1(x) when x /∈ Z is injective and surjective.
Suppose that h(a1) = h(a2) for some a1, a2 ∈ A. If a1, a2 ∈ Z then f(a1) = f(a2) implies that
a1 = a2. Similarly, if a1, a2 /∈ Z then the injectivity of g implies that a1 = a2. Thus, without loss
of generality, assume that a1 ∈ Z and a2 /∈ Z. Then f(a1) = g−1(a2), and a2 = g(f(a1)). But then
a2 ∈ Z by definition, a contradiction. Thus, a1 and a2 are both in the same set, and hence a1 = a2
and h is injective.
Now, suppose that b ∈ B. If b ∈ f(Z) then b is obviously in the range of h since h = f on this
set. Thus, assume b ∈ B\f(Z). If b = f(c), where c ∈ Z then h(c) = f(c) = b. Thus, assume that
b ∈ B\f(A). Then g(b) /∈ g(f(A)), hence g(b) /∈ Z. Thus, b = g−1(g(b)) = h(g(b)), and hence b is
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in the range of h. This completes the proof. (Thanks to Wikipedia for a little bit of guidance on
the proof.)
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