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Introduction

Motivation

@ To develop a theoretically consistent real options approach to
value R&D type projects

@ Theoretical Approaches: Cash-flow determined by GBM
dfy = pfedt + ofrdW;

@ Practice: Managerial supplied cash-flow estimates consist of
low, medium and high values

F'0 F'1 F'2 F'3 F'4
Economic Profit {Optimistic) 80 120 150 180 200
Economic Profit (Likely) 50 70 75 80 50
Economic Profit (Pessimistic) 20 25 25 20 20
3 UNIVERSITY OF
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Introduction

Valuation of R&D Projects: Managerial Sales and Cost

Estimates

@ Managers provide sales and cost estimates
Table : Managerial Supplied Cash-Flow (Millions $).

3 4 5 6 7 8 9 10
Sales 10.00 30.00 50.00 100.00 100.00 80.00 50.00 30.00
COGS 6.00 18.00 30.00 60.00 60.00 48.00 30.00 18.00
GM 4.00 12.00 20.00 40.00 40.00 32.00 20.00 12.00
SG&A 0.50 150 250 5.00 5.00 4.00 250 1.50

EBITDA 3.50 1050 17.50 35.00 35.00 28.00 17.50 10.50
CAPEX 1.00 3.00 500 10.00 10.00 8.00 500 3.00
Cash-Flow 250 7.50 1250 25.00 25.00 20.00 1250 7.50
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Standard NPV Approach Using CAPM

@ Ryan and Ryan (2002) report that 83% of businesses apply
the WACC to value discounted cash-flows (DCF)
o CAPM: E[rg] = rr + Bc(E[rm] — rf)

o Use of CAPM implies beta: ¢ = ZM:C€7€
om
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CAPM: E[rg] = rr + Bc(E[rm] — rf) .
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Matching method uses managerial supplied cash-flow
estimates to determine o pgject



Introduction

Real Options

@ Why real options?
e Superior to discounted cash flow (DCF) analysis for capital
budgeting / project valuation

e Accounts for the inherent value of managerial flexibility
o Adoption rate ~12% in industry (Block (2007))

@ What is required?

e Consistency with financial theory
e Intuitively appealing
e Practical to implement
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Introduction

Introduction: Real Options Approaches

Practical / Easy Financially
to Implement Consistent Subjecthlty

Classic
Approach

Subjective
Approach

Market Asset
Disclaimer

= X

Revised Classic
Approach

Integrated
Approach

‘NN
x xS
IR

* As classified by Borison (2005) UNIVERSITY OF
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Introduction

Relevant Literature - Utility Based Models

@ Berk et al.! developed a real options framework for valuing
early stage R&D projects

e Accounts for: technical uncertainty, cash-flow uncertainty,
obsolescence, cost uncertainty
e Value of the project is a function of a GBM process
representing the cash-flows
e Main issue: how to fit real managerial cash-flow
estimates to a GBM process
@ Miao and Wang?, and Henderson3

e Present incomplete market real options models that show
standard real options, which assume complete markets, can
lead to contradictory results

1See Berk, Green, and Naik (2004).
2See Miao and Wang (2007).
3See Henderson (2007).
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Introduction

Matching Method Advantages

The approach utilizes managerial cash-flow estimates

The approach is theoretically consistent
e Provides a mechanism to account for systematic versus
idiosyncratic risk
e Provides a mechanism to properly correlate cash-flows from
period to period

The approach requires little subjectivity with respect to
parameter estimation

The approach provides a missing link between practical
estimation and theoretical frameworks
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Introduction

RO in R&D Applications: Managerial Cash-Flow Estimates

@ Managers provide cash flow estimates

I_ Expected Cash Flows per Year
Scenario 1 2 4 5 6 7 8 9|
Optimistic 0 0] 80 120 150 180 200 220 250
Most likely 0 0| 50 70 75 80 90 100 110
Pessimistic 0 0| 20 25 25 20 20 20 20
Investment 450
Cash flow estimates provided
by managers
Cash
Flow
i 3 Time
VO
Invest K to receive
future cash flows
3 UNIVERSITY OF
K ¥ TORONTO
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Introduction

RO in R&D Type Applications: Two Approaches

@ Managers supply low, medium and high sales and cost
estimates (numerical solution)

@ Managers supply =+ sales and cost estimates from which a
standard deviation can be determined for a normal
distribution (analytical solution)
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Introduction

RO in R&D Type Applications: Low, Medium and High

Sales and Cost Estimates

@ Managers supply revenue and GM% estimates

Scenario End of Year Sales (Margin%)
3 4 5 6 7 8 9

Optimistic 80 116 153 177 223 268 314
(50%) (60%) (65%) (60%) (60%) (55%) (55%)

Most Likely 52 62 74 77 89 104 122
(30%) (40%) (40%) (40%) (35%) (35%) (35%)

Pessimistic 20 23 24 18 20 20 22
(20%) (20%) (20%) (20%) (15%) (10%) (10%)

SG&A* 10% 5% 5% 5% 5% 5% 5%

20 20

Fixed Costs 30 25 20 20 20

* Sales / General and Administrative Costs
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Introduction

RO in R&D Type Applications: + Sales and Cost

Estimates

End of Year Sales (Margin)
3 4 5 6
Sales 52+ 10 6212 74+15 77 £ 15
COGS (31+6) (37+£7) (44+9) (46+10)
SG&A 10% 5% 5% 5%
CAPEX (304+6) (25+5) (20+4) (20 + 14)

3 4 5 6

os (Sales) 520 6.20 7.40 7.70
oc (COGS) 312 372 444 462
oex (CAPEX)  3.00 250 2.00 2.00

ocr (Cash-Flow) 4.61 494 555 575

OcF = \/a§ + 024 02y —2ps,cOs0c — 2ps,EXTSOEX + 2ps.CPS,EXTCOEX
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Introduction

Real Options in R&D Type Applications

@ Problem:

e How should we value the cash flows?

e How should we account for managerial risk aversion?
@ Approach:

o Apply “matching method” with MMM to value cash flows
e Apply indifference pricing to determine the value with
manager'’s risk aversion

@ Why Account for Risk Aversion:

e MMM assumes investors are fully diversified
e Impact of managerial risk aversion on the valuation of a real
options project can enhance decision making
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Matching Cash Flows

Market Stochastic Driver

o Traded index / asset
dlt = ,u/tdt + O'Itth

@ Assume there exists a Market Stochastic Driver / Indicator
correlated to the traded index

dS; = vSidt +nSi(pdW; + /1 — p2dWih)

@ Market stochastic driver
e does not need to be traded
e could represent market size / revenues
@ is not constrained to a GBM process

@ Risk-neutral MMM
dl, = rledt + ol,d W,

dS; = DS.dt + pnS: (th +4/1- p2dW#)

ﬁ:u—@(ﬂ—r) éTORONTo
g
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Matching Cash Flows

Match Cash Flow Payoff

FyefS)
/
4 V=S
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Match Cash Flow Payoff

@ Each cash flow is effectively an option on the market
stochastic driver, VT = ¢(S1), and so, we match probabilities

nS _(y_1
p<2<' 2l 2)T> - F(e(5))
hs —(v—"2)T
¢< = U(ﬁ z) >=F*(so(s>)
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Match Cash Flow Payoff

Fy S
|
V = ST

@
UNIVERSITY OF
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Matching Cash Flows

Information Distortion

Sector Indcator ( S,)
4

P — ; o7
W w5 oe 1 iz a1 is
= time (1)

Project Value (v )

(a) Market Indicator Flow (b) Distorted Distribution Flow
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Matching Cash Flows

Risk-Neutral Measure

Theorem

The GBM Risk-Neutral Distribution. The conditional
distribution function FV is.(v) of vk conditional on S; at t, for
0 < t < Ty, under the measure Q is given by

Fuis () = @ (/707 (R = Bul 50

where the pseudo-market-price-of-risk

- 5 v— 5 v—ant Tk
M(t, S + Te—t— 2 .
(5) = = VTt

@ Notethatast | 0and S| Sy then Xk( ,
the valuation is independent of v and 7.

— ’u;r\/ Tk, i.e.
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Matching Cash Flows

Option Pricing

@ Value of the cash flows

n
- Z e IR [V, | Fi
i—1

=" e EIEQ [y(S,)| Fi]

i=1

@ Value of the project with option

V = e "EQ [max (Vi — K,0)]

— e /OO e*’(ff*f“/oo (S ) k) w
oo <Z< _ #i (51) V2or Y +\/27r

i=1

=_ 1,2
S, = 506(1/—577 Jtitn(Vikx+Vti—tky)
UNIVERSITY OF
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Matching Cash Flows

Matching Cash-Flows for Normally Distributed Estimates

@ Assume that the managers have provided cash-flow estimates
of the form N(jx, 0%)

@ Assume the Market Stochastic Driver to be a Brownian
motion

@ Assume that there exists a cash-flow process: F;
@ Introduce a collection of functions ¢ (S;) such that at each
Tk Fr = ¢i(ST0)

Theorem

The Replicating Cash-Flow Payoff. The cash-flow payoff
function ¢y (s) which produces the managerial specified

distribution ¢ (%) for the cash-flows at time Ty, when the

underlying driving uncertainty S; is a BM, and Sy = 0, is given by

Ok

VTk

oi(s) = S+ Hk-

26
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Matching Cash Flows

Value of the Cash-Flows for Normally Distributed

Estimates

Theorem

Value of the Cash-Flows. For a given set of cash-flow estimates,
normally distributed with mean . and standard deviation oy,
given at times Ty, where k = 1,2, ..., n, the value of these
cash-flows at time t < T is given by

n 3 3 O'k R
Ve(Se) =) e T <ﬁ (st+v(n—r))+uk)7
k=1 Tk

and for the case where t = 0,

n
Vo = Z e Tk </V\0'k\/ Ty + Mk) :
k=1
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Matching Cash Flows

Option Pricing for Normally Distributed Estimates

Theorem

Real Option Value of Risky Cash-Flows Estimates. For a
given set of cash-flow estimates, normally distributed with mean
Wi and standard deviation oy, given at times Ty, where

k =1,2,...,n, the value of the option at time t < Ty to invest the
amount K at time Ty < Ty to receive these cash flows is given by

RO(S) =& |(6x(5) — K) & (2EL=K) 4 g (2=

where ®(e) and ¢(e) are the standard normal distribution and density
functions, respectively, and

£1(50) = . efr(rkfro)< % (s 4T, —t))+u>,
1 kz:; ﬁ k k

k

n
b= VTomt 3 e T T

k=1

9
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Indifference Pricing

Utility Maximization

@ Assume exponential utility

@ 7 > 0 represents managerial risk aversion

@ Manager has two options: 1) invest in the market, or 2) invest
in the real option

@ Goal is to maximize the terminal utility in each of the two
options and determine the indifference price
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Indifference Pricing

Optimal Investment in the Traded Index (Merton Model)

@ Invest in market only, with m; invested in the risky asset
dXe = (rXe + me(p — r))dt + mrodW,
@ And maximize expected terminal utility

V(t,x) = sTLerET [u(XT)| Xt = x]

@ Applying standard arguments leads to the PDE

1(p—r)* (8 V)
2 o2 OV

0;V — + oV =0

e with V(T,x) = u(x), and the solution is given by

1 _iury -
V(t7 X) = _76_%(#7) (T_t)_/yer(T t)X‘ & UNIVERSITY OF
g ® TORONTO
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Indifference Pricing

Optimal Investment in the Real Option Project

@ Wealth dynamics are given as
dXt = (rXt+7Tt(l,L—r)) dt+7TtO'th, t¢ [—I_O7 Tl,..., Tn]

Xty = X454 jE1,2,00m]

where 1 4 represents the indicator function equal to 1 if the
real option is exercised
@ The manager seeks to maximize his expected terminal utility
as
U(t,x,s) = sTLerIE[u(XT)] Xt = x, 5t = 9]
t

@ Applying standard arguments, it can be shown that the
solution to U(t, x,s) can be achieved by solving the following
PDE

r)0xU + ponsdsy U)2 B

020, U 0

]_ —
OcU+rx0 Uvsd, U+ 30 UnPs 3 ((n
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Indifference Pricing

Optimal Investment in the Real Option Project (con't)

@ Boundary conditions
U(Tj,x,s) = U(7_j+,x,s)e_7¢(5), forj=1,..,n—1
U(Tn, x,5) = u(x + @n(s))

1
e Using the substitution U(t, x,s) = V(t,x)(H(t,s))*-»*
results in the simplified PDE

O¢H + 0s9sH + An?s*0ssH = 0

with H(Tp, s) = e~ 1(1=)en(ST0) and t € (To-1, Th]
e Apply dynamic programming, where at each t = T; 2

32/53



Indifference Pricing

The Indifference Price

o At t = Ty, we should invest in the real option if

(Tn=Tg)
Tl o

1
(H(Tq )= e

@ Defining f as the indifference price, i.e. the value of the real
option, and setting U(t,x — f,s) = V/(t, x) leads to

f(t,s) = —ﬁ In H(t,s)e " (Tn=1)
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Indifference Pricing

The Indifference Price for Normally Distributed Estimates

Theorem

Real Option Value of Risky Cash-Flows Accounting for Risk
Aversion. For a given set of cash-flow estimates, normally
distributed with mean py and standard deviation oy, given at
times Ty, where k = 1,2, ..., n, the value of the option at time

t < Ty to invest the amount K at time Tg < T to receive these
cash flows accounting for risk aversion, where the utility of the

investor is given by u(x) = —%X, is given by

f(t,s) =

where

H(t,s) = d)(é(t, s)) + e§ 6(t, s)®(&: — E(t, s)).

— i pz)ln H(t,s)e "(Tn=t)
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Indifference Pricing

The Indifference Price for Normally Distributed Estimates

&e=—y(1—p*)ary/To—t
S - Ok H(To=TW) 7. _ . r(Th—Tk)
aj = E e , b= g e

= VT :

k=j
N n
Aj =3 (?(1 —p%) - ﬁ) , Ao=) AT - Tj)
j=1
AO—/51+E€"(T"7T0) _s— /]j\( -,—0 o t)

B(t,s) = . VTo—t

E(t, 5) = eW(l—pz)(AO—31(5+ﬁ(To_t))_/Bl+Ker(Tn7T0))

o
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Results

Real Option Value (MMM)

5 g 1000 ‘
2 N ) A
s e e '\\\\‘%‘\\“' N

N N
c SE¥7 R s W \\\
2 A RN . S g\\\\,' \\\‘&\\\\\\\
& ' ¢ o '

100 e
10

Market Indicator (S) 0o Time (t) Market Indicator (S) 0o Time (t)
(a) Market Stochastic Driver as (b) Market Stochastic Driver as
GBM GMR

Project value and real option value of the UAV project for varying
correlation (note that they are independent of Sy, v and 7)

Correlation (p) 0.0 0.2 0.4 0.6 0.8 1.0
Project Value (Vo)  493.69 467.31 44149 416.35 392.00 368.54
Option Value (ROy) 199.82 173.83 148.71 124.82 102.45 82.02
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Results

Sensitivity to Risk - Standard Approach

Real Option Value (MAD Method)

0 5 10 15 20 25 30
Risk (A V)
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Results

Sensitivity to Risk - MMM

Assumptions:
@ Single cash-flow at T; =3
@ Expected value of the cash-flow: p; = 50
@ Correlation to traded index: p = 0.5

@ Investment time: Tg =2
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Results

Sensitivity to Risk - MMM (p = 0.5)
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Results

Sensitivity to Risk - MMM

For a single cash-flow, the real option value is given as

~ Ty — T
ROy = e O RE? e~ (T1=To) (,u1 +vo1V Tl) 1 rh T")\ / ?0012 —K
1

Distorted Mean Standard Deviation +

Recall U = —p#—
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Results

Sensitivity to Risk - MMM
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Results

Sensitivity to Risk - MMM
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Results

Sensitivity to Risk - MMM
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Results

Real Option Value - Indifference Price

RO Indifference Price

00

Sector Indicator (S)

(c) Real option indifference
price as a function of S; and t
at v = 0.01.

Time (1)

500

—— MMM (y = 0)
——=0.500
400

=S,
ge
3

12
© 300
E 200|
< 100
0 2 4 6 10
Time (1)
(d) Real option indifference

price at S; = Sy for varying lev-
els of risk aversion.
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Results

Sensitivity to Risk - Indifference Price
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Sensitivity

RO Indiff. Price RO Indiff. Price

RO Indiff. Price

Results
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Practical Implementation

Practical Implementation of the Matching Method

@ Assume managers supply revenue and GM% estimates

Scenario End of Year Sales / Margin
3 4 5 6 7 8 9
Optimistic 80 116 153 177 223 268 314
(50%) (60%) (65%) (60%) (60%) (55%) (55%)
Most Likely 52 62 74 77 89 104 122
(30%) (40%) (40%) (40%) (35%) (35%) (35%)
Pessimistic 20 23 24 18 20 20 22

(20%) (20%) (20%) (20%) (15%) (10%) (10%)
SG&A* 10% 5% 5% 5% 5% 5% 5%
Fixed Costs 30 25 20 20 20 20 20
* Sales / General and Administrative Costs
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Practical Implementation
Sales and GM% Stochastic Drivers

@ Traded index
d/t = Mltdt + O'Itth

@ Sales stochastic driver to drive revenues

dX; = psidWi + /1 — p%,dW?

o GM% stochastic driver to drive GM%

dY: = psmdXe + /1 — pZp,dWM

@ Cash flow

Vi(£) = (1 = ri) i (Xe )k (V) — e

o
® TORONTO
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Practical Implementation

Bivariate Density of Sales and GM%

The Bivariate Density of Sales and GM%. The bivariate
probability density function between sales and GM% is given by

(@71 (F(s)), @71 (G"(m))) o
f*(s) g"(m)
¢ (O=1(F*(s))) ¢ (®~1(G*(m)))

where ¢q, represents the standard bivariate normal PDF with
correlation p, and ¢ is the standard normal PDF.

U(S, m) :¢QP5M

@
UNIVERSITY OF
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Practical Implementation
Project and Real Option Value

@ Project value

V1o(X1o, Y1) = Z e~ (Ti=To) g2 [vik( X7, Y7,) | X750 Y70
k=1

@ Real option value

RO:(Xe, Ye) = e TR [(Vr (X7, Y1) — K) | Xe, Ve
o Risk-neutral measure (U = —pg; =" andd = —pgipsm 5°)
di _
Tt = rdt+odW,,
t

dXe = D dt + psy AW, + /1 — pg WS,
dYe =7 dt + psipsmd Wi + psm/1 — p% AW + mdf/\v{‘/’

50 /53



Practical Implementation
Computing the Real Option

@ Resulting PDE

OH _OH _OH 19°H 10%H 0’H
= +rv—+

H = Z 4z -
d ot Ox Vay + 2 Ox? + 2 dy? +p5M8X8y

Real Option Value ($)
n (] B
o o o

-
o

e
I

@
Value of the real option for varying ps; and psp & TORONTO
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Conclusions

Matching Method Conclusions

The approach utilizes managerial cash-flow estimates

The approach is theoretically consistent
e Provides a mechanism to account for systematic versus
idiosyncratic risk
e Provides a mechanism to properly correlate cash-flows from
period to period

The approach requires little subjectivity with respect to
parameter estimation

The approach provides a missing link between practical
estimation and theoretical frame-works
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