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Stabilizers

• A stabilizer for an unstable graph G is a subset F ⊆ E s.t. G \ F is stable.
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Network Bargaining Games

• [Kleinberg & Tardos STOC’08] recently introduced a network bargaining
game described by a graph G = (V ,E) where

I Vertices represent players

I Edges represent potential deals between players

• Players can enter in a deal with at most one neighbour

→ matching M

• If players u and v make a deal, they agree on how to split a unit value

→ allocation y ∈ RV :
yu + yv = 1 for all {uv} ∈ M
yu = 0 if u is exposed by M.

• An outcome for the game is a pair (M, y)



Network Bargaining Games

• [Kleinberg & Tardos STOC’08] recently introduced a network bargaining
game described by a graph G = (V ,E) where

I Vertices represent players

I Edges represent potential deals between players

• Players can enter in a deal with at most one neighbour

→ matching M

• If players u and v make a deal, they agree on how to split a unit value

→ allocation y ∈ RV :
yu + yv = 1 for all {uv} ∈ M
yu = 0 if u is exposed by M.

• An outcome for the game is a pair (M, y)



Network Bargaining Games

• [Kleinberg & Tardos STOC’08] recently introduced a network bargaining
game described by a graph G = (V ,E) where

I Vertices represent players

I Edges represent potential deals between players

• Players can enter in a deal with at most one neighbour

→ matching M

• If players u and v make a deal, they agree on how to split a unit value

→ allocation y ∈ RV :
yu + yv = 1 for all {uv} ∈ M
yu = 0 if u is exposed by M.

• An outcome for the game is a pair (M, y)



Network Bargaining Games

• [Kleinberg & Tardos STOC’08] recently introduced a network bargaining
game described by a graph G = (V ,E) where

I Vertices represent players

I Edges represent potential deals between players

• Players can enter in a deal with at most one neighbour

→ matching M

• If players u and v make a deal, they agree on how to split a unit value

→ allocation y ∈ RV :
yu + yv = 1 for all {uv} ∈ M
yu = 0 if u is exposed by M.

• An outcome for the game is a pair (M, y)



Network Bargaining Games

• [Kleinberg & Tardos STOC’08] recently introduced a network bargaining
game described by a graph G = (V ,E) where

I Vertices represent players

I Edges represent potential deals between players

• Players can enter in a deal with at most one neighbour

→ matching M

• If players u and v make a deal, they agree on how to split a unit value

→ allocation y ∈ RV :
yu + yv = 1 for all {uv} ∈ M
yu = 0 if u is exposed by M.

• An outcome for the game is a pair (M, y)



Network Bargaining Games

• [Kleinberg & Tardos STOC’08] recently introduced a network bargaining
game described by a graph G = (V ,E) where

I Vertices represent players

I Edges represent potential deals between players

• Players can enter in a deal with at most one neighbour

→ matching M

• If players u and v make a deal, they agree on how to split a unit value

→ allocation y ∈ RV :
yu + yv = 1 for all {uv} ∈ M
yu = 0 if u is exposed by M.

• An outcome for the game is a pair (M, y)



Network Bargaining Games

• [Kleinberg & Tardos STOC’08] recently introduced a network bargaining
game described by a graph G = (V ,E) where

I Vertices represent players

I Edges represent potential deals between players

• Players can enter in a deal with at most one neighbour

→ matching M

• If players u and v make a deal, they agree on how to split a unit value

→ allocation y ∈ RV :
yu + yv = 1 for all {uv} ∈ M
yu = 0 if u is exposed by M.

• An outcome for the game is a pair (M, y)



Network Bargaining Games

• [Kleinberg & Tardos STOC’08] recently introduced a network bargaining
game described by a graph G = (V ,E) where

I Vertices represent players

I Edges represent potential deals between players

• Players can enter in a deal with at most one neighbour

→ matching M

• If players u and v make a deal, they agree on how to split a unit value

→ allocation y ∈ RV :
yu + yv = 1 for all {uv} ∈ M
yu = 0 if u is exposed by M.

• An outcome for the game is a pair (M, y)



Network Bargaining Games

• For a given outcome (M, y) player u gets an outside alternative

αu := max{1− yv : {uv} ∈ δ(u) \M}

• If αu > yu ⇒ there exists a neighbour v of u with 1− yv > yu

→ player u has an incentive to enter in a deal with v !

• An outcome (M, y) is stable if yu + yv ≥ 1 for all edges {uv} ∈ E .

→ no player has an incentive to deviate

• A stable outcome (M, y) is balanced if yu − αu = yv − αv for all {uv} ∈ M

→ the values are “fairly” split among the players
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Network Bargaining Games

• [Kleinberg & Tardos STOC’08] proved that

a balanced outcome exists
⇔

a stable one exists
⇔

the correspondent graph G is stable.

Question: Can we stabilize unstable games through minimal changes in the
underlying network?

e.g. by blocking some potential deals?
[Biró, Kern & Paulusma, 2010, Könemann, Larson & Steiner, 2012]

• The combinatorial question behind it turns out to be exactly how to find
small stabilizers for unstable graphs!
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Our Main Results

Thm: For a minimum stabilizer F of G we have

ν(G \ F ) = ν(G)

• Network Bargaining Interpretation: there is always a way to stabilize the
game that

I blocks min number of potential deals, and

I does not decrease the total value the players can get!

Thm: Finding a minimum stabilizer is NP-Hard. Assuming UGC, it is hard to
approximate within any factor better than 2.

Thm: There is a 4ω-approximation algorithm for general graphs, where ω is
the sparsity of the graph.
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Stable Graphs via LP

• Stable graphs be characterized in terms of fractional matchings and covers.

Def. a vector x ∈ RE is a fractional matching if it is a feasible solution to (P):

max{1T x : x(δ(v)) ≤ 1 ∀v ∈ V , x ≥ 0} (P)

Def. a vector y ∈ RV is called a fractional vertex cover if it is a feasible
solution to the dual (D) of (P):

min{1T y : yu + yv ≥ 1 ∀{uv} ∈ E , y ≥ 0} (D)

• By duality: size of a fractional matching ≤ size of a fractional vertex cover
Moreover, optimum value of (P) equals optimum value of (D)
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Stable Graphs via LP

Proposition: G is stable if and only if the cardinality of a maximum matching
ν(G) of G is equal to optimum value νf (G) of (P) and (D).

(It follows from classical results e.g. [Uhry’75, Balas’81, Pulleyblank’87])

• In other words, G is stable if and only if

cardinality of a max matching = min size of a fractional vertex cover y .

• Note: such y does not necessarily have integer coordinates!

• A graph where the cardinality of a maximum matching ν(G) equals min size
of an integral vertex cover is called a König-Egervary graph
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• All these classes are widely studied but almost no algorithmic results are
known for making a graph stable!
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How do we find F∗?
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• We call F ⊆ E an M-stabilizer if
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• Let us focus on the M-stabilizer problem, that is finding an M-stabilizer of
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When M is given

Thm: The M-stabilizer problem is NP-hard, and no (2− ε)-approximation
exists for any ε > 0 assuming the Unique Games Conjecture. Furthermore, the
M-stabilizer problem admits a 2-approximation algorithm.

• Approximation result is LP-based.

min
∑

{uv}∈E\M

zuv

s.t. yu + yv = 1 ∀{u, v} ∈ M

yu + yv + zuv ≥ 1 ∀{u, v} ∈ E \M and u, v matched

yv + zuv ≥ 1 ∀{u, v} ∈ E \M and u unmatched

y ≥ 0

z ≥ 0

• Main observation: There always exists an optimal solution to the above LP
that is half integral!
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When M is NOT given

Thm: The stabilizer problem is NP-hard, and no (2− ε)-approximation exists
for any ε > 0 assuming the Unique Games Conjecture.

• What about approximation?

• From previous discussion, the difficulty lies in understanding which matching
“survives” in G \ F !

• Take an arbitrary max matching. How bad can this choice be?

• Unfortunately, for max matchings M and M ′, a min M-stabilizer and a min
M ′-stabilizer can have a huge difference in size!

• A graph G is called ω-sparse if ∀S ⊆ V , |E(S)| ≤ ω|S |.

Thm: There is a 4ω-approximation algorithm for finding a minimum stabilizer.
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Approximation Algorithm

• Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with νf (G) > ν(G). We can find L ⊆ E with
|L| ≤ 4ω s.t.

I G \ L has a matching of size ν(G)

I νf (G \ L) ≤ νf (G)− 1
2
.

• In other words, we can find a small subset of edges to remove from G that

I does not decrease the value of a max matching

I but reduces the minimum size of a fractional vertex cover.
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Proof of the Lemma

Thm [Balas ’81, Uhry ’75]: One can find a half integral fractional matching
x∗ s.t.

(i) Edges e : x∗e = 1
2

form odd cycles C1, . . . ,Cq with q = 2|νf (G)− ν(G)|
(ii) Let M̄ := {e ∈ E : x∗e = 1} and Mi be a maximum matching in Ci . Then

M ′ = M̄ ∪M1 ∪ . . . ,∪Mq is a maximum matching in G

x* = 1/2 

x* = 1 

x* = 0 
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Proof of the Lemma

• Relying on complementary slackness, we find a half-integral y and show that
there is a node u satisfying

(a) yu = 1
2

(b) L := {{u,w} ∈ E : yw = 1
2
} satisfies |L| ≤ 4ω

(c) ν(G \ L) = ν(G)

• Then, we just remove L and set yu := 0!
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Approximation Algorithm

Thm: There is a 4ω-approximation algorithm for finding a minimum stabilizer.

• For i = 1, . . . , 2(νf (G)− ν(G)) do:

(i) Apply previous Lemma.

(ii) If G has become stable, STOP.

• At the end of the Algorithm, we have a stable graph.

• We remove at most 4ω · 2(νf (G)− ν(G))

• It remains to observe that 2(νf (G)− ν(G)) is a lower bound on the size of a
min stabilizer!
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min stabilizer!



A lower bound

• Consider the Edmonds-Gallai decomposition [B,C,D] of G

B C D 

• Compute a max matching M in G that exposes the fewest inessential
singletons in B.
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A lower bound

• Let F ∗ be a minimum stabilizer.

Claim: k ≤ |F ∗|

• Let H1, . . . ,Hk be the k components in B defined by M. Let M∗ be max
matching in G \ F ∗.

Key observation: ∀i , there is at least one vi ∈ Hi that is essential in G \ F ∗
...and w.l.o.g. we can assume each vi is M-exposed!
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Final Remarks

• Main open question: Is a O(1)-approximation possible?

• For d-regular graphs, our algorithm yields a solution of value k · d . We get a
2-approximation algorithm by straightening the lower bound to k d

2
.

• ... what about factor critical graphs?

• Good formulations?

• Generalized settings?

Thank you!
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