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Matching and Stable Graphs

e A matching of a graph G = (V/, E) is a subset M C E such that each v € V
is incident into at most one edge of M

e A vertex v € V is called essential if there is no matching in G of maximum
cardinality that exposes v.
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Finding small stabilizers

e In this talk we focus on the following optimization problem:

Given an unstable graph G, find a stabilizer of minimum cardinality.

e A recent motivation to study this problem comes from the theory of
network bargaining games
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Network Bargaining Games
e [Kleinberg & Tardos STOC'08] recently introduced a network bargaining
game described by a graph G = (V, E) where

» Vertices represent

» Edges represent between players

e Players can enter in a deal with at most one neighbour

— matching M

e If players u and v make a deal, they agree on how to split a unit value

— allocation y € RY:
Yo+ y, =1forall {uv}eM
yu = 0 if u is exposed by M.

e An for the game is a pair (M, y)
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Network Bargaining Games

e For a given outcome (M, y) player u gets an
ay :=max{l—y, : {uv} € §(u)\ M}
o If oy > y, = there exists a neighbour v of u with 1 —y, >y,

— player u has an incentive to enter in a deal with v!

e An outcome (M, y) is stable if y, + y, > 1 for all edges {uv} € E.

— no player has an incentive to deviate

e A stable outcome (M, y) is balanced if y, — oy = y» — ey for all {uv} € M

— the values are “fairly” split among the players
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e [Kleinberg & Tardos STOC'08] proved that

a balanced outcome exists
<~
a stable one exists
<
the correspondent graph G is stable.

Question: Can we stabilize unstable games through minimal changes in the
underlying network?
e.g. by blocking some potential deals?
[Bird, Kern & Paulusma, 2010, Kénemann, Larson & Steiner, 2012]

e The combinatorial question behind it turns out to be exactly how to find
small stabilizers for unstable graphs!
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Our Main Results

Thm: For a minimum stabilizer F of G we have

v(G\ F) =v(G)

e Network Bargaining Interpretation: there is always a way to stabilize the
game that

> blocks of potential deals, and

> the total value the players can get!

Thm: Finding a minimum stabilizer is NP-Hard. Assuming UGC, it is hard to
approximate within any factor better than 2.

Thm: There is a 4w-approximation algorithm for general graphs, where w is
the of the graph.
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e Stable graphs be characterized in terms of fractional matchings and covers.

Def. a vector x € RE is a fractional matching if it is a feasible solution to (P):
max{lTx :x(6(v))<1Vv eV, x>0} (P)

Def. a vector y € R is called a fractional vertex cover if it is a feasible
solution to the dual (D) of (P):

min{l’y .y, +y >1V{u} € E, y >0} (D)

e By duality: size of a fractional matching < size of a fractional vertex cover
Moreover, optimum value of (P) equals optimum value of (D)
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Stable Graphs via LP

Proposition: G is stable if and only if the cardinality of a maximum matching
of G is equal to optimum value of (P) and (D).

(It follows from classical results e.g. [Uhry'75, Balas'81, Pulleyblank’87])

e In other words, G is stable if and only if

cardinality of a max matching = min size of a fractional vertex cover y.

e Note: such y does not necessarily have integer coordinates!

e A graph where the cardinality of a maximum matching v(G) equals min size
of an integral vertex cover is called a graph
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Stable Graphs via LP

e As we showed

Stable graphs D Koénig-Egervary graphs O Bipartite graphs.

e All these classes are widely studied but almost no are
known for making a graph stable!
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Stabilizers and maximum Matchings

Thm: For a minimum stabilizer F of G we have
v(G\ F)=v(G)

Proof: e Let M be a max matching with |F N M| minimum.
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e Consider G’ := G\ (F\ M) — There is a M-flower disjoint from F
e M\ F is not maximum in G\ F — find a (M \ F)-augmenting path

e — implies existence of an even M-alternating path in G (Contradiction!) [
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How do we find F*?

e Previous theorem implies G \ F* contains a maximum matching M of G
Easy Assumption: Suppose such matching M is given

e We call F C E an M-stabilizer if

» F is a stabilizer
» [FNM|=0.

e Let us focus on the , that is finding an M-stabilizer of
minimum cardinality

o How difficult is it?



When M is given



When M is given

Thm: The M-stabilizer problem is NP-hard, and no (2 — €)-approximation
exists for any € > 0 assuming the Unique Games Conjecture.



When M is given

Thm: The M-stabilizer problem is NP-hard, and no (2 — €)-approximation
exists for any € > 0 assuming the Unique Games Conjecture. Furthermore, the
M-stabilizer problem admits a 2-approximation algorithm.



When M is given

Thm: The M-stabilizer problem is NP-hard, and no (2 — €)-approximation
exists for any € > 0 assuming the Unique Games Conjecture. Furthermore, the

M-stabilizer problem admits a 2-approximation algorithm.

e Approximation result is LP-based.

min Z Zyy
{w}eE\M

st. yu+tyw=1 YuvieM
Yo+t +zw>1 Y{u,v} € E\Mand u,v matched
w+zw>1 V{u,v}€ E\M and v unmatched
y=0
z > 0 integer



When M is given

Thm: The M-stabilizer problem is NP-hard, and no (2 — €)-approximation
exists for any € > 0 assuming the Unique Games Conjecture. Furthermore, the

M-stabilizer problem admits a 2-approximation algorithm.

e Approximation result is LP-based.
min Z Zyy
{uv}eE\M
st. yu+tyw=1 YuvieM
Yo+t +zw>1 Y{u,v} € E\Mand u,v matched
w+zw>1 V{u,v}€ E\M and v unmatched
y=0
z>0
e Main observation: There always exists an optimal solution to the above LP

that is half integrall
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Thm: The stabilizer problem is NP-hard, and no (2 — ¢)-approximation exists
for any £ > 0 assuming the Unique Games Conjecture.

e What about approximation?

e From previous discussion, the difficulty lies in understanding which matching
“survives” in G \ F!

e Take an arbitrary max matching. How bad can this choice be?

e Unfortunately, for max matchings M and M’, a min M-stabilizer and a min
M’-stabilizer can have a in size!

e A graph G is called w-sparse if ¥S C V, |E(S)| < w]|S]|.

Thm: There is a 4w-approximation algorithm for finding a minimum stabilizer.
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Approximation Algorithm

e Our algorithm relies on the following Lemma.

Lemma: Let G be a graph with v¢(G) > v(G). We can find L C E with
IL] < 4w s.t.

» G\ L has a matching of size v(G)
> l/f(G \ L) S l/f(G) — %

e In other words, we can find a small subset of edges to remove from G that
» does not decrease the value of a max matching

» but reduces the minimum size of a fractional vertex cover.
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e Relying on complementary slackness, we find a half-integral y and show that
there is a node u satisfying

(@) yu= %
(b) L:={{u,w} € E:y, = 3} satisfies |L| < 4w

() UG\ L) =1(G)

e Then, we just remove L and set y, := 0!
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Approximation Algorithm

Thm: There is a 4w-approximation algorithm for finding a minimum stabilizer.

eFori=1,...,2(v(G) — v(G)) do:
(i) Apply previous Lemma.
(ii) If G has become stable, STOP.
e At the end of the Algorithm, we have a stable graph.

e We remove at most 4w - 2(vr(G) — v(G))

e It remains to observe that 2(v¢(G) — v(G)) is a lower bound on the size of a
min stabilizer!
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A lower bound

e Consider the Edmonds-Gallai decomposition [B,C,D] of G

i

e Compute a max matching M in G that exposes the fewest inessential
singletons in B. k := # of exposed nodes in non-singleton components of B.

Thm [Pulleyblank '87]: k = 2(v¢(G) — v(G))
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Final Remarks

e Main open question: Is a O(1)-approximation possible?

e For d-regular graphs, our algorithm yields a solution of value k - d. We get a
2-approximation algorithm by straightening the lower bound to kg.

e ... what about factor critical graphs?
e Good formulations?

e Generalized settings?

Thank you!



