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Motivation

Main Aim

To create a computational framework that provides justifiable
answers to a broad range of “what if?” questions about systemic
risk in random financial networks.
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Motivation
Aspects of

@ random financial network (RFN): stochastic model for N
banks, their balance sheets, behaviour and mutual exposures.

@ systemic risk (SR): the risk that default or stress of one or
more banks will trigger default or stress of further banks,
leading to large scale cascades of failures in the RFN.

© computational framework:

@ rigorous asymptotic analysis as N — oo;
© Monte Carlo simulations for finite N.

@ Typical what if? question: What if the RFN with parameter
0 experiences a random shock? Is there a critical “knife-edge”
value 0* sharply separating cascading from non-cascading?

@ justifiable answers:

» clear, reasonable assumptions;
» rigorous analysis;
» robust conclusions.
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Why Study

@ The climax of the crisis in 2008 was predominantly a network
crisis driven by two major explosions:

» The buyers of CDS protection from AIG were unaware of the
huge exposures AIG had taken on to its balance sheet.

» Similarly, the true nature of Lehman Bros’ highly levered
balance sheet was massively obscured by their illegal use of
the infamous “Repo 105" transactions.

© Much of Basel III is macroprudential: Reporting and limits
on large exposures to individual counterparties or groups of
counterparties; the Liquidity Coverage Ratio (LCR) and the
Net Stable Funding Ratio (NSFR); the capital surcharges on
SIFIs.

© New interbank exposure databases will need new theory.

)
Q It’s fun.
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Static Cascade Models
Channels

There are at least four important channels of Systemic Risk:

@ Correlation: The system may be impaired by a large
correlated asset shock.

© Default Contagion: Default of one bank may trigger
defaults of other banks.

© Liquidity Contagion: Funding illiquidity of one bank may
trigger illiquidity of other banks.

© Market Illiquidity: Large scale asset sales by one or more
distressed banks may trigger a “firestorm” or downward price
spiral, further impairing the entire system.
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Static Cascade Models

o Contagion effects in financial networks are analogous to the
spread of disease.

e A number of distinct mechanisms can be identified.
o We model such mechanisms first in static cascades.

e Static means during the cascade we ignore external shocks (in
particular central bank actions) and focus only on internally
generated shocks.
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Static Cascade Models
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Static Cascade Models

EN2

Zv: Zv = Zw Qwv;

o Total nominal assets = Y, +
Dv + X’U + Ev; Xv = Zw va-
e (1, = amount bank v owes bank w.

o Total nominal liabilities =

o We assume a bank v defaults whenever its mark-to-market
equity becomes zero (it can’t go negative):

E = Assets — Liabilities = 0

@ Then any creditor bank w is forced to mark down its
interbank assets, thus receiving a default shock.
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Static Cascade Models

©Q At the onset of the cascade, some banks have AY = E, <0
and become primary defaults.

Q Let pq(,") be amount of interbank debt v can pay after n steps
of the cascade.

© The mark-to-market value of interbank assets is then

Z(n) = ZH p(n 2 ) wv = Qw’u/)_(w

Q@ and
p{” = FEN (p0=0); FEN (p) = max(0, min(X,, Yo+ Mypw—Dy))

v

@ Clearing condition is fixed point of mapping, guaranteed to
exist by Tarski Fixed Point Theorem:

p=FFN(p)
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Static Cascade Models

O If A denotes the default buffer after n cascade steps, then

AT(;L) - Zva 1_ (n l/X ))
Py = X, h(AlTY/X,)

@ Threshold functions such as

h(z) = max(xz+ 1,0) — max(z,0)
or iz(:v) =1,

determine fractional recovered value of defaulted assets.

© As n — oo, buffers A converge to unique fixed point
At = {A}} of solvency cascade mapping.

@ Gai-Kapadia 2010 Model is formally identical to EN2001, but
with h replaced by h.
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Static Cascade Models
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[iquidity (

©000O0O0

At time 0, banks experience deposit withdrawals Ad, > 0.
These are paid immediately in order of seniority by...
First liquid assets Z 4+ Y’, then fixed assets Y*'.

Debtor banks receive liquidity shocks;

Let bank v have initial liquidity buffer 2 = =-Ad, <0
After n — 1 cascade steps, then

ZQwv 1_ /Z ))

As n — oo, buffers »i converge to unique fixed point

= {2} of liquidity cascade mapping.
Mathematically identical to EN 2001! The Gai-Haldane-
Kapadia 2011 Liquidity Cascade is also formally identical to
GK 2010.
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Static Cascade Models

@ In these models, each bank’s behaviour, and hence the
cascade itself, is determined by a single buffer A, or %,,.

@ Single buffer models can involve multiple thresholds.
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Double Cascade Model

Q@ In more complex models, banks” behaviour is determined by
two or more buffers.

© HCCMS 2013 introduces a double cascade model of
illiquidity and insolvency, intertwining two buffers A, ¥,
that combines the essence of both [GK, 2010a] default
cascade and [GK, 2010b] liquidity cascade.

@ No non-contagion channels of SR: We assume them away.

Question

What effect does a bank’s behavioural response to liquidity stress
have on the probable level of eventual defaults in entire system?
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Double Cascade Model

© The crisis commences on day 0 after initial shocks trigger
default or stress of one or more banks;

© Balance sheets are recomputed daily;
© Banks respond daily ;

@ External cash flows, interest payments, asset and liability
price changes are ignored throughout crisis.
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Double Cascade Model
Bank Be
all C

On each day of the crisis:

© Insolvent banks, characterized by A = 0, default 100% on
their IB obligations. Its creditor banks write down their

defaulted exposures to zero thereby experiencing a solvency
shock.

@ A stressed bank, any non-defaulted bank with ¥ = 0, reduces
its IB assets A8 to (1 — \)AIB, transmitting a stress shock
to the liabilities each of its debtor banks.

@ ) is a constant across all banks.

@ A newly defaulted bank also triggers maximal stress shocks.
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Random Financial Networks

© Real world financial systems are far from these models.

© Bank balance sheets are hugely complex.

@ Interbank exposure data are never publicly available.

Q Interbank exposures are known to change rapidly day to day.

@ Banking networks are often highly heterogeneous.
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Random Financial Networks
3 Reast

@ Even a completely known deterministic system, if it is large
enough, can be well described by the average properties of
the system.

© Balance sheets of banks, between reporting dates, are not
observed even in principle, and change quickly.

© Even a fully known hypothetical financial system will be hit
constantly by random shocks from the outside, stochastic
world.
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Random Financial Networks

Hurd, McMaster University Contagion Channels 20 / 41



Random Financial Networks
Random F

..is a quintuple (N, &€, A, X, Q) where
o N, €& is a directed random configuration graph (the
“skeleton”):

» nodes v € N represent “banks”;
» directed links ¢ € £ represent interbank exposures.

o A= (A,)yen is the set of random default buffers;

o ¥ = (X,)yen is the set of random stress buffers;

o = (Q)pee is the set of random interbank exposures.

@ Random configuration graphs are characterized by in/out
degree distribution matrices {Pji, Qk;}-

@ Random variables have CDFs {D,i(z), Sjr(z), Wi;(z)}.
@ Initially insolvent (or stressed) banks have A, <0 (X, <0).
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Random Financial Networks

Th

Define conditional stress and default probabilities after n cascade
steps:

p(.z) =PlveD,lveNy ,
¢ =Plv e S,lveNy .

J

(1)

Problem

Given the RFN (N, &, A, %, Q), compute p3 and g5y, the
probabilities that a type (j, k) bank eventually defaults or
becomes stressed.
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Large Graph Asymptotic Analysis

LT

N = oo configuration graphs have a locally tree-like (LT)
property. We extend this notion to RFNs by assuming a certain
conditional independence on balance sheet random variables:

Assumption
LT independence property
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Large Graph Asymptotic Analysis

It leads to conditions under which probabilities like this can be
computed using independence:

Pl A, <3 en Quoti 3, < D went vaQgZ)konditions]

fractional default on link fractional stress on link
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Large Graph Asymptotic Analysis
Casc

Suppose quantities pg.z_l), qj(z_l), tl(g_l)l are known. Then

n n— ®J
pg'k) = <Djk7 (g]( 1)) >

where (-, -) denotes the inner product on R, and ® denotes
convolution. Here

" V) = D[ =p)doa) + 1 Vs (@)
k/
n— n— 1
o =) - e/ (1= W) - Quy

Similar formulas hold for q§z), tg;.).

11n=1) i probability link is 100% defaulted.

k
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Numerical Experiments
Poisson

Poisson random directed graphs (N, €) with mean
connectivity z = 10;

o Buffer distributions A, = 0.04 and X, = 0.02 where total
assets are A, = 1;

o Edge distribution €);: log normal with means j; = -

5j¢’
standard deviation o, = 0.4uy;
o Initial shock: random subset of nodes that default;
@ ) € [0, 1] represents the “stress response” parameter.

@ Analytic formulas using N = oo LTI approximation are
compared with N = 20000 Monte Carlo estimators.

Tom Hurd, McMaster University Contagion Channels 26 / 41



Numerical Experiments
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Figure : Experiment 1A: Comparison of MC vs LTI analytics on
Poisson network, with errors bars for MC
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Numerical Experiments

Remark

o The discrepancies are concentrated around the knife-edge,
that is, the cascade phase transition.

@ Monte Carlo variance is also extremely high around the
knife-edge.

o Stress and default are negatively correlated.
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Numerical Experiments
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Figure : (1) The effect of default buffer. (r) The effect of stress buffer.
MC error bars are shown.
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Poisson Experiment 1C:

Behaviour of Default Cascade Behaviour of Stress Cascade
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Figure : Stress and default cascade sizes on Poisson networks as
functions of z and A.
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Numerical Experiments
Experi

e Skeleton graph: N = 90 node, L = 450 edge subgraph of a
single realization of a 1000 node scale-free graph.

o Default buffers A, = (k,j,)"* expla; + b1 X,];
o Stress buffers ¥, = %(kvjv)fg1 expla; + bl)zv];
o Exposures Qp = (kgj,)? explas + by X;

o {X,,X,,X,} are LLD. standard normals;

o Parameters match moments of interbank exposure data

61 = 03, a; = 803, bl = 0.9,/82 = —0.2, a9 = 875, bg =1.16
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Figure : Undirected skeleton graph of stylized 90 bank EU network.
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Numerical Experiments
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Figure : (1) EU resilience in normal times; (r) EU cascade after an

extreme crisis.
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Numerical Experiments
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Figure : Default and stress probabilities of individual EU banks after
extreme crisis.
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Overall Summary

@ We have developed a static framework for understanding
general cascade mechanisms in financial networks.

e We have defined systemic risk (SR) in random financial
networks (RFNs);

o We have a flexible computational framework, analytical for
N = oo and Monte Carlo, even in complex model
specifications;

o We have justifiable answers to a host of what if? questions.
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@ The stress response parameter \ and stress buffer ¥ strongly
control network resilience to default;

@ These complex cascade models exhibit critical regions just as
predicted by simple cascade models.

o LTT analytics and Monte Carlo work best, and agree best,
when the system is far from critical;
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Our RFNs are a powerful laboratory for studying such
complex problems;

o Our experiments reveal systemic responses that are difficult
to predict, but explicable in hindsight;

o In “realistic” networks, cascades are not triggered unless
conditions become “extreme” for other reasons.

@ Many model parameters that have strong effects on the
stability of such systems still remain to be studied.

@ There are many stories to tell about the network effects that
can happen.
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