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Agenda 

 Review of optimization in oil refining 

 Real Time Optimization 

 Reduced Space Optimization 



Petroleum refining 



Refining optimization history 

 Head office 

 Refining early adopters (Exxon 
1950’s) 

 Crude selection, operating modes 

 1961 early SLP paper (Shell oil) 

 LP not just a fast solution 
technique 
 Tools to interpret the solution and 

run what-if’s. 

 



Refining optimization history 

 Refineries 

 Improving process control 

Cold 

Hot 



Advanced Control 

 1980’s insight that complicated process 
control problems could be formulated and 
solved by LP and QP 



Refining Optimization Hierarchy 

Short  Term Plan 

Advanced Control 

Regulatory 
Control 

Operating Objectives, Component 

Prices, Constraints 

Operating Targets 

Controller Setpoints 

Valve Positions 



Why Optimize in Real Time? 

 Short term planning model based on 
“sustainable” average operation 

 But things change..... 

 Crude oil may be different 

 Processes may be cleaner/more fouled 

 May be hotter/colder 

 Real process is nonlinear 

 Real time optimization intended to capture 
these opportunities 



RTO Approach 

 Model plant with engineering equations 

 Heat + mass + hydraulic + equilibrium 
relationships 

 Run simulation in parallel to the plant and 
calibrate to the plant measurements 

 Optimize the model 

 



Building the simulated plant 

Block 2 Block 1 

Blocks are solved in the order of material 
flow 

Sequential modular 



Sequential modular 

Recycles become awkward and need iteration 

 

Block1 Block2 Block3 

Block4 Block5 



Open Equations 

 Complete plant model expressed in one large 
set of (sparse) equations 

 Run it through a nonlinear root solver 

 Encouraged by success in solving non linear 
constraints 



Simple still 
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Inputs 

 Need to fix certain variables to reach solution 

 Plant instruments have error 



Reconciliation 
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 Find the smallest set of adjustments to the plant 
measurements that satisfy the equations 



Initial Basis 

 Offline design software used to fit base case 

 Results used to provide initial basis for open 
equations 

 Thereafter, converged online solutions used 
as starting basis for next online run 



Optimization engine 

 Minos 

 Projected augmented Lagrangian 

 Analytic derivatives 

 Convergence not guaranteed! 

 Good starting values 

 Sensible bounds 

 Tuning parameters 



Gross error detection 

 Least squares based reconciliation works well 
when the measurement s are considered to 
be normally distributed around their true 
values with approximately known error 

 Large errors (eg. instrument failures) violate 
these assumptions and bias reconciliation 

 RTO systems include pre-screening to 
eliminate values obviously in error (Wi=0) 

 



Optimization 

 Fix instrument adjustments and other reconciled 
performance values 

 Change objective function 
 Maximize Profit:  Products - Feed – Utilities 

 New setpoints = Old setpoints ± rate limits 



RTO Sequence 

 Check recent history to 
confirm that plant is steady 

 Eliminate bad measurements 

 Fit model to plant data 

 Calculate new setpoints to 
increase profit 

 Check process steady, controls 
available 

 



Technical challenges 

 Solving 20+K non linear equations is not fool 
proof 

 95% convergence failures occurred during 
reconciliation phase 

 Could have put more time trying to make 
constraints more linear 
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Catalytic cracker Ultramar QC 

 ~ 27,500 equations 

 ~ 29,500 variables 

 ~ 111,000 derivatives 

 Reconciliation – 500+ measurements 

 Optimization 60 setpoints 

 Execution – 25-40 minutes/cycle 

 

 



Case study – 40KBPD crude unit 

Stream Before 
(KBPD) 

After 
(KBPD) 

Change 
(KBPD) 

LSR 2.47 2.51 0.041 

Naphtha 5.15 4.91 -.246 

Distillate 4.66 5.03 0.368 

VLGO 1.1 1.1 0 

LVGO 1.33 1.22 -.103 

HVGO 7.68 7.6 -.075 

Asphalt 13 13.02 0.018 

    

NET 
PROFIT 

  $2220/Day 

 

 



RTO Benefits 

Unit Benefit 

Crude units $.01- $.05/BBL 

Hydrocracker $.07-$0.3/BBL 

FCCU 2% unit profit 

Entire refinery $0.50/BBL (Solomon) 



Doubts and unease 

Was the optimization solution correct? 

Stream Before 
(KBPD) 

After 
(KBPD) 

Change 
(KBPD) 

LSR 2.47 2.51 0.041 

Naphtha 5.15 4.91 -.246 

Distillate 4.66 5.03 0.368 

VLGO 1.1 1.1 0 

LVGO 1.33 1.22 -.103 

HVGO 7.68 7.6 -.075 

Asphalt 13 13.02 0.018 

    

NET 
PROFIT 

  $2220/Day 

 

 



Profit = Product – Energy - Payroll 

Intuitive answer: 
 
Profit will improve by: 
 
1. Reduce the terms with negative 

signs 
2. Increase the terms with positive 



Online performance 
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Optimization geometry 



Constraints 

 On paper constraints are just a line 

 In real life – people spend their time avoiding 
trouble 

 Constraints can be benign or emotionally 
charged 

 In RTO, the operators experienced first hand 
the simplex method 



PROFIT PATH ANALYSIS
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RTO Path 

Feed Max Path 



A drop in the bucket 
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Behavioural Economics 

 How emotions and perceptions affect 
economic decisions 

 People math ≠ Algebraic math 

 Risk, reward, gains, losses, time are perceived 
differently 

 Daniel Kahneman – Nobel prize economics 
2002 



Prospect theory - gains and losses 

Objective 
gains 

Objective 
losses 



RTO Path 

Feed Max Path 

Subjective 
profit 

Objective 
profit 



Familiarity 

 Comfort is based upon pattern recognition 

 10,000 hour rule (Gladwell) 

 Practice makes perfect 

 Advanced control  - imitated the best 
operator 

 Value proposition of RTO is to seek out non-
obvious benefits  



Technology for people 

 Interact with users 

 Leverage off patterns 

 Cruise control 

 Smart phones 

 



RTO Approach Rethought 

 How do we model a plant? 

 Familiar 



Modeling the plant 

 Fundamental design models? 
 Design: 
  What are the best arrangements and sizes of 

equipment to maximize ROI 

 Operating plant 
 Equipment and capability is fixed 

 Processes must be operated around 70% of design 
to break even 

 RTO benefits consistently estimated to be around 
3-5% 

 



Can we model a plant just from 
its historical operating data? 



Projection methods (PCA/PLS) 

 Technique to find patterns in sets of data 

 Linear algebra (singular value decomposition) 
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Two dimensional example 

-3 

-2 

-1 

0 

1 

2 

3 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 

1st Principal component 
direction of maximum 
variation (92%) 

2nd Principal 
component 
perpendicular to 
1st  (8%) 



Projection Methods 

 PCA 

 Find an optimal (least squares) approximation to a 
matrix X using T1..Tk      k<<n 

 PLS 

 Find a projection that approximates X well, and 
correlates with Y 
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Happenstance plant data 

 Number of measurements >> rank (true 
dimensionality) 

 Every engineering relationship removes 1 
degree of freedom 

 However operator rules of thumb also 
remove degrees of freedom 



Projection Model 

 Models the correlation between variables 
caused by: 

 Fundamental engineering relationships 

 Operator preferences 

 This is not the full space 

 It is a subspace within which the operator is 
familiar 



Flow example revisited 
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Although we have 5 columns, the rank of the matrix =3 
A = B + C + D 
D = E 



Latent space optimization 

subject  to 
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Key ideas 

 Model the plant data directly 

 Operators don’t like surprises 

 Projection methods implicitly model the the 
operator 

 Does it work? 

 Is this optimal? 



Case Study 

 Chemical company 

 If we expand our feed system, how much can we 
produce and still make on specification product 

 



Flowsheet 



Dimensions and data 

 70 operator setpoints and valve positions 

 22 lab analyses 

 1 year of operating data (hourly averages) 

 



PCA analysis results 
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Conclusions 

 Although there were 70 setpoints… 

 The underlying dimensionality of this data was 
much lower 

 With a purely linear model 

 13 components could explain 90% of the variation 

 23 components could explain > 97% of the 
variation  

 Nonlinearity is not significant over the operating 
range studied 



Results 

 Latent space optimization 
 Plant capable of 10% rate increase while keeping 

product qualities within specification 

 Identified bottlenecks (valves wide open) 

 Optimum plausible and familiar 
 Restricted to “typical” plant envelope 

 Effort 
 2 man weeks 

 Result 
 Production within 0.2% of predicted 



Globally optimal? 

 Probably not 

 Better and feasible 

 Certainly 



Final thoughts 

 Optimization math ≠ human math 

 Our ability to make sense of high dimensional 
and complicated situations is limited 

Politics is the art of the possible 
 

Bismarck 


