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Deterministic linear programs

A typical Linear Programming problem is of the form:

(LP) min ¢"x
st. Ax<b

@ Well-solved problem
@ Several applications

@ Basis of several algorithms for harder problems
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Some possible approaches:
> Robust optimization: Obtain solutions feasible for any possible realization of data
(usually assumes that there is some constraint on the values data can attain)
> Multi-stage stochastic optimization: User can take actions, observe realization of data
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Deterministic linear programs

A typical Linear Programming problem is of the form:

(LP) min ¢'x
st. Ax<b
Well-solved problem
Several applications
Basis of several algorithms for harder problems

Key assumption: Data is deterministic, i.e., known in advance
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What do we do if that is not a realistic assumption? How do we deal with
nondeterministic data?

¢

Some possible approaches:

> Robust optimization: Obtain solutions feasible for any possible realization of data
(usually assumes that there is some constraint on the values data can attain)

> Multi-stage stochastic optimization: User can take actions, observe realization of data
and take corrective actions

> Consider “average” or “expected”’ data: Reduces to deterministic problem, but can
give not too good solutions

> Chance-constrained program: Want a high probability of satisfying set of constraints
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Chance-constrained programs

Chanced-constrained linear programming problem with stochastic right-hand sides:

(PLP) min c¢"x
st. P(Tx>&)>1—¢
x € X,

@ X C RY a polyhedron,

@ &: random variable in R™ with finite discrete distribution,
o T eR™Y,

@ €€ (0,1), and

@ ceR"

Suppose that ¢ takes values from £,..., £" with probabilities 71, . .., 7,, respectively.
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Feasibility: Example

Consider the special case where d =m =3, n=4, c=(1,1,1), X = RY T =1,
€=05, 7 = (0.25,0.25,0.25,0.25).

_ 4 2 7 2
Let {&}; = 5 1,08, 1].]s5
2 4 3 1
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Feasibility: Example

Consider the special case where d =m =3, n=4, c=(1,1,1), X = RY T =1,
¢ =05, m = (0.25,0.25,0.25, 0.25).

_ 4 2 7 2
Let {¢}, = 51,1 8 |, 1], 5
2 4 3 1
min ¢’ x . d
st P(Tx>€)>1—c = M XX
x € X, st. P(x>¢&)>05
Then x is feasible if and only if x > & for at least two j € {1,...,4}.
2
Thenx=| 7 is not feasible, since it Tx = x # &, for j =1,2,3.
1
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Feasibility: Example

Consider the special case where d =m =3, n=4, c=(1,1,1), X =R9, T =1,
€= 0.5, 7 = (0.25,0.25,0.25, 0.25).

4 2 7 2
Let {¢/}7_, = 5 |, 8|, 1],] 5
2 4 3 1
min ¢’ x . m
st. P(Tx>&)>1—-¢ = min ,-;X'
x € X, st. P(x>¢&)>05

Then x is feasible if and only if x > & for at least two j € {1,...,4}.

So to get a feasible solution, one needs to pick any two out of 4 scenarios to be satisfied.

Thus
T

min ¢ x . U J
st B(Tx>€)>1—c = MM 2maxs
x e X, st. 1TCA{L,....,n}H|I| >2
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NP-hardness [Luedtke, Ahmed and Nemhauser, 2010]

st. 1C{l,...,nH|I| > K
NP-complete problem CLIQUE: Given G = (V, E), is there a clique of size at least C?
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NP-hardness [Luedtke, Ahmed and Nemhauser, 2010]

st. 1C{l,...,nH|I| > K

NP-complete problem CLIQUE: Given G = (V, E), is there a clique of size at least C?
Translate:

@ Vertices to constraints

@ Edges to scenarios
&; =1 if edge e is incident to vertex v, 0 otherwise.

min Y max&;
vev €€l

st. ICE|>K

is the cardinality of the smallest set of vertices covering at least K edges of G.
So if there is a clique of size C(C — 1)/2, then there is a solution to such problem with
K = C(C — 1)/2 and objective < C (and vice-versa). O
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Comments

@ In the case of continuous distribution, even checking feasibility can be challenging,
since it entails multidimensional integration
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Comments

@ In the case of continuous distribution, even checking feasibility can be challenging,
since it entails multidimensional integration
@ Nonetheless, the discrete distribution case with Monte-Carlo sampling and using as

confidence parameter o > € gives us a lower bound on the optimal solution with
probability 1 — exp{—2n(a — €)?} (Luedtke et al, 2010).

@ Under some mild assumptions (like continuity), the discrete distribution case with
Monte-Carlo sampling and using as confidence parameter o < € gives us a feasible
solution with probability approaching 1 exponentially with n (Luedtke et al, 2010).
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Previous work on Chance-constrained programs

@ Charnes et al. (1958) - Chance-constrained programs with disjoint probabilistic
constraints

@ Miller and Wagner (1965) - Chance-constrained programs with joint probabilistic
constraints for independent random variables.

@ Prékopa (1970) - Log-concave probability measure on random right-hand sides:
There is an equivalent convex program

@ Sen (1992) - Chance-constrained programs with discrete distributions using
disjunctive programming reformulation.

@ Ruszczynski (2002) - Precedence-constrained knapsack set: Use scenarios that
dominate others.

@ Luedtke, Ahmed and Nemhauser (2010) and Kiigiikyavuz (2012) -
Chance-constrained programs with discrete random variables in the right-hand-side:
MIP reformulation

@ Our work: Extends Luedtke et al. (2010) and Kii¢iikyavuz (2012)

MIP chance Dec 4, 2012 8 /40



MIP reformulation [Luedtke, Ahmed and Nemhauser, 2010]
Let z € {0,1}" where z; = 0 guarantees that Tx > &;. Then (PLP) is equivalent to
(PLP) min c¢"x
st. y=Tx
y+z& =& ViE[n]
Z};l mjzj < €
ze€{0,1}"
x € X.

Let's look at a single chance-constraint: For each k € [m], let

Dy = {(yk,z) e Ry x {0,1}": Z']szj <e w+&rz > Vj € [n]}

j=1

Goal
Study Dy and get cuts to strengthen the MIP formulation J

Changing notation a bit:

Q= (y,z)e]lhx{O,l}":Za,—z,-Sp, y + hjzi > h; Vj € [n]
Jj€ln]
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Other related work

Mixing set with a knapsack constraint:

Q=14 (r,2) ERe x {0,1}": ) a7 < p, y + hiz; = hy Vj € [r]

Jj€ln]

@ Work on the mixing set:

>

vVvyvyVvyy

@ Qiu,

Giinliik and Pochet

Zhao and de Farias,

Conforti, di Summa and Wolsey
Miller and Wolsey

van Vyve

to mention a few

Ahmed, Dey, Wolsey - Cover LPs with violation

@ J. Luedtke, S. Kiigiikyavuz, Y. Song, A Branch-and-Cut Algorithm for the
Chance-Constrained Knapsack Problem.

@ S. Kiiciikyavuz, M. Zhang, On Continuous Mixing Set with a Cardinality Constraint.
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Cutting plane approach

Mixed Integer Programming (MIP):

min ¢’ x
st. Ax <b
x € ZP xR"P

Q Let P, be the set of feasible solutions to our MIP.

Q Let R be a relaxation of P, (typically by dropping integrality constraints), that is
R D P,.

© Solve the optimization problem over R, with optimal solution x* € R

@ Find a cut/cutting plane/valid inequality: An inequality 77 x < 7, satisfied by all
x € Py, but with 77 x* > 7,

9 LetR<—Rﬂ{x:7rTx§7ra}
O Goto3
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Cutting plane approach
Mixed Integer Programming (MIP):

min ¢’ x
st. Ax<b Nt
x €ZP x R"7P —c X

[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
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Cutting plane approach
Mixed Integer Programming (MIP):

min ¢’ x
st. Ax<b . °
x € ZP x R"™P
) .
° .
) .
. ° ° °/ (] °
° \\\o o . . .
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MIP chance Dec 4, 2012 12 / 40



Cutting plane approach
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[ ] [ ]
\ ° °
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. ) ° ° ° .
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Cutting plane approach
Mixed Integer Programming (MIP):

min ¢’ x
[ ]
st. Ax<b
[ ]
1 1 ®
Tx < T,
m2x < 7r§ °
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Cutting plane approach
Mixed Integer Programming (MIP):

min ¢’ x
[ ]
st. Ax<b
[ ]
1 1 °
Tx < T,
2 < 2
x < 75 N
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Cutting plane approach
Mixed Integer Programming (MIP):

min ¢’ x

[ ] [ ]

st. Ax<b
o [ ]
1 1 [ ] [ ]

Tx < T,

2 < 2
x < 75 N .

3 < 3

wx < T,
[ ] [ ]
o [ ]

*

[ ] ..X o [ ] o [ ]
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Cutting plane approach
Mixed Integer Programming (MIP):

min ¢’ x
o [ ]
st. Ax<b
[ ] [ ]
1 1 o [ ]
Tx < T,
7r2X S 7r§ ° o
x < 7l
L] [ ] [ ] [ ] [ ]
° A x* o ° °
[ ] [ ] [ ] [ ] [ ] [ ]
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Cutting plane approach
Mixed Integer Programming (MIP):

min  c’x

s.t. Ax < b . °
[ ] [ ]
o [ ]
[ ] [ ]
L4 o o . °
Valid inequalities/ « . . .

Cutting planes/
Cuts ° L o o ° °
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Cutting plane approach
Mixed Integer Programming (MIP):

min  c'x
st.  Ax<b ° .
L] [ ]
[ ] °
L] [ ]
[ ] [ ]
Valid inequalities/ o .
Cutting planes/
Cuts hd L . . ° °

Want “strongest possible” valid inequalities (facet-defining): Get the convex hull of
feasible solutions
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Cutting plane approach
Mixed Integer Programming (MIP):

min  c’x
st.  Ax<b ° .
[ ] [ ]
o [ ]
[ ] [ ]
[ ] [ ]
Valid inequalities/ o .
Cutting planes/
Cuts . . . . . .

Want “strongest possible” valid inequalities (facet-defining): Get the convex hull of
feasible solutions

OBS: A strong formulation may be obtained implicitly, for instance as a projection of a
higher dimensional polyhedron (Extended formulation).
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Mixing set with a knapsack constraint

Luedtke et al. (2010) and Kiigiikyavuz (2012) study inequalities for

Q:=4(y,2) €R: x{0,1}": > " aizy < p, y + hjz; > b Vj € [n]
J€Eln]

@ For the cardinality constraint/equal probabilities case (all a; = 1):
> Characterization of all valid inequalities and separation (Luedtke et al.)
> Extended formulation (Luedtke et al.)
> (T,M.) inequalities (Kigiikyavuz)
> Compact extended formulation (Kiiglikyavuz)
@ For the general constraint/probabilities case:
> Strengthened star inequalities (Luedtke et al.)
> Extended formulation for LP+strengthen star (Luedtke et al.)
> Strengthened (T, ;) inequalities (Kiiciikyavuz)
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Mixing set with a knapsack constraint

Experiments by Kii¢clikyavuz:
Table 2 Probabilistic lot-sizing experiments

f 1 Gap % Gapimp Cuts Nodes Time (endgap)

CPX Mix TL CPX Mix TL CBX Mix TL CPX Wix TE

313 .3 9 W B 3 ML 17 1 130 255 5
10 1.7 2 97 97 131 833 333 10403 171 68 B21 520 1M
15 20 24 98 98 217 1360 55% 36765 265 209 T04) 1387 341
20 24 18 97 97 248 1527 TI9 2MM0 291 418 TLO) 1762 967

1 524 47 74 74 235 574 359 T28R9 37258 15663 T03) TiD4) 347610.2)
10 27 4 78 77 288 846 499 30773 1313 4,169 T.T) TIOS) TiD4)
1530 ¥ 71 76 373 133 07 22837 492 |83 T(l4) TO7) TO6
20 35 3% T5 T6 452 1849 1089 17.031 245 030 T(1.7) T(09) T.T)
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Mixing set with a knapsack constraint

Luedtke et al. (2010) and Kiiglikyavuz (2012) study inequalities for

Q:=4(y,2) €R: x{0,1}": > aizy < p, y + hjz; > h; Vj € [n]
J€Eln]

@ For the cardinality constraint/equal probabilities case (all a; = 1):
> Characterization of all valid inequalities and separation (Luedtke et al.)
> Extended formulation (Luedtke et al.)
> (T,M.) inequalities (Kigiikyavuz)
> Compact extended formulation (Kiiglikyavuz)
@ For the general constraint/probabilities case:
> Strengthened star inequalities (Luedtke et al.)
> Extended formulation for LP+strengthen star (Luedtke et al.)
> Strengthened (T, ;) inequalities (Kiiciikyavuz)

Our goal: Extend their results
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Outline

© Our results
@ Characterizing valid inequalities
@ Separation over a large class of inequalities
@ Explicit facet-defining inequalities
@ Extended formulation
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Valid inequalities for @

Lemma

Suppose that

W+ Y 0z =B (1)
J€ln]
is a valid inequality for conv(Q) for some a € R",~, 3 € R. Then v > 0. Moreover, if
~ = 0 then (1) is a valid inequality for P := {z € {0,1}" : > a;z; < p}.
=1

Proof.
Observe that (1,0) € rcone(conv(Q)). This implies that v > 0. Moreover, since
conv(P) = proj,(conv(Q)), it follows that if v = 0 then (1) is a valid inequality for
conv(P). O
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A few observations

Q= (y7z)€]R+><{071}":z:ajzj-§p7 y + hjzi > hj Vj € [n]

J€Eln]
@ We may assume, WLOG that hy > hy > ... h,.
o Let vi=max{k:} ., a < p}
@ If hy >y > hyy1, then zi =1 for all j < k
@ Therefore, y > h, 11

Dec 4, 2012
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Inequalities that do not come from P

Previous Lemma implies we may assume have the form:

y+Y a4z =B

Jj€ln]

Define, for each 0 < k < v, the knapsack set

Pr:=<Kz¢€ {0,1}["]:ZajZJ'SP—Zaj

>k j<k

Theorem (Abdi and F.)

v+ Zie[n] ajz; > [ is a valid inequality for conv(Q) if and only if (o, B) € G, where

G .= (a,ﬂ)e]R”x]R:Zozj+Zozjzj*+hk+12B, VzteP,V0< k<.
j<k >k
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Rewriting G

j<k J>k

G:= {(aﬂ)eR"xR:Za,-Jrza,-zj*Jrhm2/3, Vz*ePk,Vogkgy.}

Let

J>k

f(c) :== min {Zajzj- 1z € Pk} . (2)

Then it is easy to see that

Q:{(a,ﬁ)e]R”xR:Zaj—l—fk(a)—l—thZ,B, VOSkSI/}.

i<k

MIP chance Dec 4, 2012 20 / 40



Proof

| | | |
T T T T T
hi 2 hy > « .. hi ‘ hiy1 ¢ ¢ *>hy,
Recall:
zi=1forall j < k

(<) Let (y*,z") € Q. Let ho := +o0.
Then hx > y™ > hiyq for some 0 < k < v. Since z7 =1 for all j < k, z* € Px. Then

YA oz Zhea+ Y o+ Y a7

J€ln] <k Jj>k
> hiyr + Zaj + fi(@)
Jj<k

> B since (o, 8) € G
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Proof

| | | |
T T T T T
hi > ho > oo | hggr v c>hy
Recall:

zi=1forall j < k

(=) Take 0 < k < wv. Let z" € {0,1}" be an optimal solution to fi(c) with z" =1 for
all 1 <j < k. Let y* = hiy1. Observe that (y*,z*) € Q. Hence, validity implies that

By +> oz
Jj€ln]
= hi1 + Zaj + Zajzj*
<k >k
=h1+ Y aj+ fia).
J<k

Since this holds for all 0 < k < v, it follows that («, 3) € G.
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A few observations

@ This theorem implies that separation over inequalities of this form can be done in
polytime if optimization over P can be solved in polytime

fi(e) :== min Zajzj- 1z € Py
>k
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A few observations

@ This theorem implies that separation over inequalities of this form can be done in
polytime if optimization over P can be solved in polytime

@ It implies that separation over inequalities of this form can be done in polytime if
optimization over Pk can be solved in polytime, for all 0 < k < v

@ Note that if & > 0, fi(«) can be solved easily for all k

@ Complexity of separation “resides” in negative coefficients.

fi(e) :== min Zajzj- 1z € Py
>k
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Separation over a large class of inequalities

Let R, S be a partition of [n]. Let's assume that j € R implies «j > 0. Then any
inequality of the form

y+ Z oz > f
Jj€ln]
with o > 0, for all j € Risin GN{e; > 0,Vj € R}
Theorem (Abdi and F.)
If optimization over {z € {0,1}° : 3" a;z; < p} can be done in polynomial time, then
jes
separation over all valid inequalities y + 3 «jz; > (3 such that o; > 0,Vj € R=[n]\ S

Jeln]
can be done in polynomial-time.

Examples:
@ a; not too large for j € S

@ All aj equal for j € S (in this case, a better characterization is possible)
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Theorem (Abdi and F.)

Consider an inequality of the form

y+ ) ajz > (3)

J€ln]

If there exists (a, p) € RV x RUF=12) such that (o, B,0,p) € T, then (3) is a valid
inequality for conv(Q). Furthermore, when aj =1 for all i € S C [n] and (3) is a valid
inequality for conv(Q) with o; > 0,Yj € R := [n] \ S, then there exists

(0,p) € R“T1 x RUTVO=72) gych that (o, 8,0, p) € T, where

Di<k %+ Brok+ 3Pt i 2B VO< k<,

. . aiok + pi < qj Vn>j>k

J'_ (CV?ByU?p)' VOSkSI/
o,p<0,0;>0,Vj €R
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Proof idea

We saw that the set of valid inequalities is characterized by

f(c) :== min Zajzj- 1z € Px
J>k
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We don't have a good characterization for this solution, but if a; = 1 for all j such that
aj < 0, then we can easily characterize the solution to fi(«).
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Proof idea

We saw that the set of valid inequalities is characterized by

f(c) :== min Zajzj- 1z € Px
J>k

We don't have a good characterization for this solution, but if a; = 1 for all j such that
aj < 0, then we can easily characterize the solution to fi(«).

Use such characterization and LP duality to obtain the formulation.
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Properties of facet-defining inequalities for conv(Q)

Lemma (Abdi and F.)

Suppose that the inequality
Y+ oz >8 (4)
J€ln]
is facet-defining for conv(Q). Then
(i) (o, B) is an extreme point of G,
(i) B = h1 + fo(a), and
(i) if ax < O for some 1 < k < n, then a; > 0.

Note: fo(c) := min {ZJ.E["] oz Y a8z < p}
Jj€ln]
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Implications

@ Consider the cardinality constrained case (a; = 1, V).
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Implications

@ Consider the cardinality constrained case (a; = 1, V).
@ Suppose | have a partition R, S of [n], with aj < 0= € Sanda; >0=j € R.
@ Suppose |S| < p
@ Then fo(a) := min {Zje[n] oz Y, ajzj < p} = _jes @, hence any such
J€ln]

facet-defining inequality will have the form:

Y+ i+ Y az >+ q

JER JES JES
Y+ iz 4> A(l-z)=h
JER JES

with a, A >0
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Luedtke et al.'s inequalities

Luedtke et al.’s inequalities for the cardinality constrained case:

Theorem (Luedtke et al.)

Let me {1,...,p}, R={n,...,rn} C{1,...,m} and
S={q,-- -, qp-m} CS{p+1,...,n}. For m< p, define AT" = hpmi1 — hmi2 and

i—1
A = maX{A;nl7hm+1 — hmtiv1 —ZA}"},/’:Z...,p—m

J=1

Then, with h,, ., = hmy1,

a p—m
Y+ (hy = hg)z; + Y AT z) > hy
Jj=1 j=1

is valid for Q and facet-defining if h, = h1
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Validity proof

Note: 0 < AT <AF <...< A7,
G:=1(,B)ER"XR: > aj+fi(a)+he1>BY0< k<
i<k

In this case, v = p. Notethat SC {p+1,...,n},s0j €S =j>v=p.

() := min Zajzj 1z € Py

>k
p—m
fi(a) := min Z—A}"ZJ : sz <p—kp=-— Z A7
jes jes j=k—m+1
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Zaj + fil(a) + b1 > 8

i<k
becomes
p—m
Soai— D ANt =h- ) AT =
j<kij€ER j=k—m+1 jes
k—m
Z ozj-i-ZAj'-"-i-hkﬂ >
j<kijeR j=1

Note that >°._, .crj = h1 — hy, for some r: > k.

k—m
Do+ Al ha>h
j<kjER j=1
Soifk<m
k—m
Z aj-i-ZA}"-i-th =h—h,+hp>h
j<kjEeR j=1
k—m—1

Andif k> m, A7, > hni1 — hpik—min — >, Af so
=i

k—m
Z o + Z A + by > Z o+ hmi1r — b1 + ey = b — he,y + B =
j<kjeR j=1 JER
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More inequalities for the cardinality constrained case

Theorem (Kiiglikyavuz, 2012)
Suppose that aj = 1 for all j € [n]. Take a positive integer m < v = p. Suppose that
(i) R-={n,...,r} C{1,...,m}, where n < ... < ra; and

(i) SCc {m+2,...,n} and take a permutation of the elements in S,
Ms:={q1,...,qp—m} such that g > m+j forall 1 <j<p—m.

Set rar1 :=m+ 1. Let A1 := hmi1 — hmi2, and for 2 < j < p — m define
A= max{AH, Bt — s — > (Aiz qi > m A+, i <j)} .

Then the (T,MN.) inequality

a p—m
y+ Z(h'j o h'j+1)zfj + Z Aj(1— qu) > hy (5)
J=1 Jj=1

is valid for conv(Q). Furthermore, (5) is facet-defining inequality for conv(Q) if and only
if hyy = hy.

v
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Theorem (Abdi and F.)

Take an integer 0 < m < v such that p — sp, is an integer. For each 1 < j < p — sp, let

k(j) :== max{k : j > sk — sm}. Let

() R={n,...,ra} C{1,...,m} wheren < ... < ra;

(i) S:={q1,...,9s} C{m+2,...,n} where s =p — sy and q; > k(j) for all
1< < p—sm and

(iii) S is chosen so that aj =1 for all j € S, and a; < sp, for all j ¢ S.

Set r;y1 = m+1. Let Ag := hmi1 — hyy41, and for 2 < j < p — sp, define

Dy o= max{qu_l, hmi1 — higy1 + Z(Am L qi > k(j),i <J)} : (6)
Then
y+ Z(hrj — hry)zs + ZA,—(I —z) > hy (7)
Jj=1 i€eS
is a valid inequality for conv(Q). Furthermore, (7) is a facet-defining inequality for
conv(Q) if and only if hy, = h.
33 /40
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Extended formulation

Kiiciikyavuz (2012):
o If (y*,z") is an extreme point of conv(Q), then y € {hy, ho,..., hu41}.
@ Foreach 0 < k <, let

Qui1 =14 (1,2) € {haa} x {0,1}": Y "2z <p,z>1V <k

Jj€ln]

Rir1 =14 (y,2) € {hya} x [0,1]": Y 2z <p,z; >1Vj < k
J€ln]
o conv(Q) = conv(lJXT Q) +C C conv(JLH] Ri) +C

@ This leads to a polynomial-size extended formulation that is exact in the cardinality
constraint case.
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Extended formulation

Kiiciikyavuz (2012):
o If (y*,z") is an extreme point of conv(Q), then y € {hy, ho,..., hu41}.
@ Foreach 0 < k <, let

Qui1 =14 (1,2) € {haa} x {0,1}": Y "2z <p,z>1V <k
J€Eln]

Rir1 =14 (y,2) € {hya} x [0,1]": Y 2z <p,z; >1Vj < k
J€ln]
o conv(Q) = conv(lJXT Q) +C C conv(JLH] Ri) +C
@ This leads to a polynomial-size extended formulation that is exact in the cardinality
constraint case.
@ How strong is such extended formulation in the general case?
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Extended formulation

Theorem (Abdi and F.)
Let EQ be the extended formulation obtained as described. Then
y+thJ2hJ ,Vj:]-,...,n

. n ajzi<p
projy(EQ) € | (1r2) € Ry x [0,1]": 2577

y+> ez >8 Yo p)E G
j=1

where G is the set of coefficients of valid inequalities that are only allowed to have
negative coefficients for all j such that a; = 1.

Note: Using similar arguments, one can derive polynomial size extended formulations
which have even better provable strength.
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A better extended formulation

Bienstock (2008) gave polynomial-size formulations that have arbitrarily close gap to the
convex hull of 0-1 solutions to the knapsack set.
Can we use his results in this context?
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A better extended formulation

Bienstock (2008) gave polynomial-size formulations that have arbitrarily close gap to the
convex hull of 0-1 solutions to the knapsack set.

Can we use his results in this context?

Take M > 0 and let

Gm={(a,8) €G:0a;>—-MV1<j<n}.
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A better extended formulation

Bienstock (2008) gave polynomial-size formulations that have arbitrarily close gap to the
convex hull of 0-1 solutions to the knapsack set.

Can we use his results in this context?

Take M > 0 and let

Gm={(,B) €G:a;>-M,V1<j<n}.

Theorem (Abdi and F.)

For any M > 0 and € > O there exists a polyhedron RQ such that conv(Q) C RQ, and
if (y*,z") € RQ and y + 37 ajz; > B is a valid inequality of conv(Q) whose
coefficients, aj, are bounded below by —M, then

n
Yy + Zaij* > B —eMn.
=1

Moreover, RO can be described explicitly as the projection of a polyhedron of dimension
0] (e’lnlﬂl/é] 1/) that is described by O (e’lnzﬂl/é] 1/) constraints.
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Conclusion

Studied mixing set with a knapsack constraint

Characterized valid inequalities that do not come from knapsack polytope

Used it to derive polynomial-time separation of a large class of valid inequalities
Used it to generalize previous inequalities for the cardinality constrained case

Extended formulation

¢ ¢ ¢ ¢ ¢ ¢

Future work:

» Computational experiments
> Other classes of inequalities
> Other applications of the studied set

Take away: Try to reduce the complexity of the negative part!
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"The important thing is to realize the positive side
and try to increase that; realize the negative side
and try to reduce.
That’s the way."

Dalai Lama
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"The important thing is to realize the positive side
and try to increase that; realize the negative side

and try to reduce.

That’s the way."
Dalai Lama

THANK YOU!
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