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s.t. Ax ≤ b
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Well-solved problem

Several applications

Basis of several algorithms for harder problems

Key assumption: Data is deterministic, i.e., known in advance

What do we do if that is not a realistic assumption? How do we deal with
nondeterministic data?

Some possible approaches:
◮ Robust optimization: Obtain solutions feasible for any possible realization of data

(usually assumes that there is some constraint on the values data can attain)
◮ Multi-stage stochastic optimization: User can take actions, observe realization of data

and take corrective actions
◮ Consider “average” or “expected” data: Reduces to deterministic problem, but can

give not too good solutions
◮ Chance-constrained program: Want a high probability of satisfying set of constraints
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Chance-constrained programs

Chanced-constrained linear programming problem with stochastic right-hand sides:

(PLP) min cT x

s.t. P(Tx ≥ ξ) ≥ 1− ǫ
x ∈ X ,

X ⊂ R
d : a polyhedron,

ξ: random variable in R
m with finite discrete distribution,

T ∈ R
m×d ,

ǫ ∈ (0, 1), and

c ∈ R
n.

Suppose that ξ takes values from ξ1, . . . , ξn with probabilities π1, . . . , πn, respectively.
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Feasibility: Example

Consider the special case where d = m = 3, n = 4, c = (1, 1, 1), X = R
d , T = I ,

ǫ = 0.5, π = (0.25, 0.25, 0.25, 0.25).
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 is not feasible, since it Tx = x 6≥ ξj , for j = 1, 2, 3.
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min cT x

s.t. P(Tx ≥ ξ) ≥ 1− ǫ
x ∈ X ,

⇒
min

m
∑

i=1

xi

s.t. P(x ≥ ξ) ≥ 0.5

Then x is feasible if and only if x ≥ ξj for at least two j ∈ {1, . . . , 4}.
So to get a feasible solution, one needs to pick any two out of 4 scenarios to be satisfied.
Thus

min cT x

s.t. P(Tx ≥ ξ) ≥ 1− ǫ
x ∈ X ,

⇒
min

m
∑

i=1

max
j∈I

ξji

s.t. I ⊆ {1, . . . , n}, |I | ≥ 2
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NP-hardness [Luedtke, Ahmed and Nemhauser, 2010]

min
m
∑

i=1

max
j∈I

ξji

s.t. I ⊆ {1, . . . , n}, |I | ≥ K

NP-complete problem CLIQUE: Given G = (V ,E), is there a clique of size at least C?
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NP-complete problem CLIQUE: Given G = (V ,E), is there a clique of size at least C?
Translate:

Vertices to constraints

Edges to scenarios

ξev = 1 if edge e is incident to vertex v , 0 otherwise.

min
∑

v∈V

max
e∈I

ξev

s.t. I ⊆ E , |I | ≥ K

is the cardinality of the smallest set of vertices covering at least K edges of G .
So if there is a clique of size C(C − 1)/2, then there is a solution to such problem with
K = C(C − 1)/2 and objective ≤ C (and vice-versa).
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since it entails multidimensional integration

Nonetheless, the discrete distribution case with Monte-Carlo sampling and using as
confidence parameter α > ǫ gives us a lower bound on the optimal solution with
probability 1− exp{−2n(α− ǫ)2} (Luedtke et al, 2010).

Under some mild assumptions (like continuity), the discrete distribution case with
Monte-Carlo sampling and using as confidence parameter α < ǫ gives us a feasible
solution with probability approaching 1 exponentially with n (Luedtke et al, 2010).
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Previous work on Chance-constrained programs

Charnes et al. (1958) - Chance-constrained programs with disjoint probabilistic
constraints

Miller and Wagner (1965) - Chance-constrained programs with joint probabilistic
constraints for independent random variables.

Prékopa (1970) - Log-concave probability measure on random right-hand sides:
There is an equivalent convex program

Sen (1992) - Chance-constrained programs with discrete distributions using
disjunctive programming reformulation.

Ruszczynski (2002) - Precedence-constrained knapsack set: Use scenarios that
dominate others.

Luedtke, Ahmed and Nemhauser (2010) and Küçükyavuz (2012) -
Chance-constrained programs with discrete random variables in the right-hand-side:
MIP reformulation

Our work: Extends Luedtke et al. (2010) and Küçükyavuz (2012)
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MIP reformulation [Luedtke, Ahmed and Nemhauser, 2010]
Let z ∈ {0, 1}n where zj = 0 guarantees that Tx ≥ ξj . Then (PLP) is equivalent to

(PLP) min cT x

s.t. y = Tx

y + zjξj ≥ ξj ∀j ∈ [n]
∑n

j=1 πjzj ≤ ǫ

z ∈ {0, 1}n

x ∈ X .

Let’s look at a single chance-constraint: For each k ∈ [m], let

Dk :=

{

(yk , z) ∈ R+ × {0, 1}
n :

n
∑

j=1

πjzj ≤ ǫ, yk + ξjkzj ≥ ξjk ∀j ∈ [n]

}

.

Goal

Study Dk and get cuts to strengthen the MIP formulation

Changing notation a bit:

Q :=







(y , z) ∈ R+ × {0, 1}
n :

∑

j∈[n]

ajzj ≤ p, y + hjzj ≥ hj ∀j ∈ [n]







.
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Other related work

Mixing set with a knapsack constraint:

Q :=







(y , z) ∈ R+ × {0, 1}
n :

∑

j∈[n]

ajzj ≤ p, y + hjzj ≥ hj ∀j ∈ [n]







.

Work on the mixing set:
◮ Günlük and Pochet
◮ Zhao and de Farias,
◮ Conforti, di Summa and Wolsey
◮ Miller and Wolsey
◮ van Vyve
◮ to mention a few

Qiu, Ahmed, Dey, Wolsey - Cover LPs with violation

J. Luedtke, S. Küçükyavuz, Y. Song, A Branch-and-Cut Algorithm for the
Chance-Constrained Knapsack Problem.

S. Küçükyavuz, M. Zhang, On Continuous Mixing Set with a Cardinality Constraint.
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Cutting plane approach

Mixed Integer Programming (MIP):

min cT x

s.t. Ax ≤ b

x ∈ Z
p × R

n−p

1 Let PI be the set of feasible solutions to our MIP.

2 Let R be a relaxation of PI (typically by dropping integrality constraints), that is
R ⊇ PI .

3 Solve the optimization problem over R, with optimal solution x∗ ∈ R

4 Find a cut/cutting plane/valid inequality: An inequality πT x ≤ πo satisfied by all
x ∈ PI , but with πT x∗ > πo

5 Let R ← R ∩ {x : πTx ≤ πo}

6 Go to 3
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Cutting plane approach
Mixed Integer Programming (MIP):
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Cutting plane approach
Mixed Integer Programming (MIP):

min cT x

s.t. Ax ≤ b

π1x ≤ π1
o

π2x ≤ π2
o

π3x ≤ π3
o

Valid inequalities/
Cutting planes/
Cuts

−cT x

Want “strongest possible” valid inequalities (facet-defining): Get the convex hull of
feasible solutions

OBS: A strong formulation may be obtained implicitly, for instance as a projection of a
higher dimensional polyhedron (Extended formulation).
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Mixing set with a knapsack constraint

Luedtke et al. (2010) and Küçükyavuz (2012) study inequalities for

Q :=







(y , z) ∈ R+ × {0, 1}
n :

∑

j∈[n]

ajzj ≤ p, y + hjzj ≥ hj ∀j ∈ [n]







.

For the cardinality constraint/equal probabilities case (all aj = 1):
◮ Characterization of all valid inequalities and separation (Luedtke et al.)
◮ Extended formulation (Luedtke et al.)
◮ (T ,ΠL) inequalities (Küçükyavuz)
◮ Compact extended formulation (Küçükyavuz)

For the general constraint/probabilities case:
◮ Strengthened star inequalities (Luedtke et al.)
◮ Extended formulation for LP+strengthen star (Luedtke et al.)
◮ Strengthened (T ,ΠL) inequalities (Küçükyavuz)
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Mixing set with a knapsack constraint

Experiments by Küçükyavuz:
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Valid inequalities for Q

Lemma

Suppose that

γy +
∑

j∈[n]

αjzj ≥ β (1)

is a valid inequality for conv(Q) for some α ∈ R
n, γ, β ∈ R. Then γ ≥ 0. Moreover, if

γ = 0 then (1) is a valid inequality for P := {z ∈ {0, 1}n :
n
∑

j=1

ajzj ≤ p}.

Proof.

Observe that (1, 0) ∈ rcone(conv(Q)). This implies that γ ≥ 0. Moreover, since
conv(P) = projz(conv(Q)), it follows that if γ = 0 then (1) is a valid inequality for
conv(P).
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A few observations

Q :=







(y , z) ∈ R+ × {0, 1}
n :

∑

j∈[n]

ajzj ≤ p, y + hjzj ≥ hj ∀j ∈ [n]







.

We may assume, WLOG that h1 ≥ h2 ≥ . . . hn.

Let ν := max{k :
∑

j≤k aj ≤ p}.

If hk > y ≥ hk+1, then zj = 1 for all j ≤ k

Therefore, y ≥ hν+1
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Inequalities that do not come from P

Previous Lemma implies we may assume have the form:

y +
∑

j∈[n]

αjzj ≥ β

Define, for each 0 ≤ k ≤ ν, the knapsack set

Pk :=







z ∈ {0, 1}[n] :
∑

j>k

ajzj ≤ p −
∑

j≤k

aj







.

Theorem (Abdi and F.)

y +
∑

j∈[n] αjzj ≥ β is a valid inequality for conv(Q) if and only if (α, β) ∈ G, where

G :=







(α, β) ∈ R
n × R :

∑

j≤k

αj +
∑

j>k

αjz
∗
j + hk+1 ≥ β, ∀ z

∗ ∈ Pk ,∀ 0 ≤ k ≤ ν.






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Rewriting G

G :=







(α, β) ∈ R
n × R :

∑

j≤k

αj +
∑

j>k

αjz
∗
j + hk+1 ≥ β, ∀ z

∗ ∈ Pk ,∀ 0 ≤ k ≤ ν.







Let

fk(α) := min







∑

j>k

αjzj : z ∈ Pk







. (2)

Then it is easy to see that

G =







(α, β) ∈ R
n × R :

∑

j≤k

αj + fk (α) + hk+1 ≥ β, ∀ 0 ≤ k ≤ ν







.
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Proof

Recall:
zj = 1 for all j ≤ k

(⇐) Let (y∗, z∗) ∈ Q. Let h0 := +∞.
Then hk > y∗ ≥ hk+1 for some 0 ≤ k ≤ ν. Since z∗j = 1 for all j ≤ k , z∗ ∈ Pk . Then

y
∗ +

∑

j∈[n]

αjz
∗
j ≥ hk+1 +

∑

j≤k

αj +
∑

j>k

αjz
∗
j

≥ hk+1 +
∑

j≤k

αj + fk (α)

≥ β since (α, β) ∈ G
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Proof

Recall:
zj = 1 for all j ≤ k

(⇒) Take 0 ≤ k ≤ ν. Let z∗ ∈ {0, 1}n be an optimal solution to fk(α) with z∗j = 1 for
all 1 ≤ j ≤ k . Let y∗ = hk+1. Observe that (y∗, z∗) ∈ Q. Hence, validity implies that

β ≤ y
∗ +

∑

j∈[n]

αjz
∗
j

= hk+1 +
∑

j≤k

αj +
∑

j>k

αjz
∗
j

= hk+1 +
∑

j≤k

αj + fk (α).

Since this holds for all 0 ≤ k ≤ ν, it follows that (α, β) ∈ G.
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A few observations

This theorem implies that separation over inequalities of this form can be done in
polytime if optimization over P can be solved in polytime

fk(α) := min







∑

j>k

αjzj : z ∈ Pk







.
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polytime if optimization over P can be solved in polytime

It implies that separation over inequalities of this form can be done in polytime if
optimization over Pk can be solved in polytime, for all 0 ≤ k ≤ ν

Note that if α ≥ 0, fk(α) can be solved easily for all k

Complexity of separation “resides” in negative coefficients.

fk(α) := min







∑

j>k

αjzj : z ∈ Pk







.
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Separation over a large class of inequalities

Let R,S be a partition of [n]. Let’s assume that j ∈ R implies αj ≥ 0. Then any
inequality of the form

y +
∑

j∈[n]

αjzj ≥ β

with αj ≥ 0, for all j ∈ R is in G ∩ {αj ≥ 0,∀j ∈ R}

Theorem (Abdi and F.)

If optimization over {z ∈ {0, 1}S :
∑

j∈S

ajzj ≤ p} can be done in polynomial time, then

separation over all valid inequalities y +
∑

j∈[n]

αjzj ≥ β such that αj ≥ 0, ∀j ∈ R = [n] \ S

can be done in polynomial-time.

Examples:

aj not too large for j ∈ S

All aj equal for j ∈ S (in this case, a better characterization is possible)
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Theorem (Abdi and F.)

Consider an inequality of the form

y +
∑

j∈[n]

αjzj ≥ β. (3)

If there exists (σ, ρ) ∈ R
ν+1
− × R

(ν+1)(n−ν/2)
− such that (α, β, σ, ρ) ∈ J , then (3) is a valid

inequality for conv(Q). Furthermore, when ai = 1 for all i ∈ S ⊆ [n] and (3) is a valid

inequality for conv(Q) with αj ≥ 0,∀j ∈ R := [n] \ S, then there exists

(σ, ρ) ∈ R
ν+1
− × R

(ν+1)(n−ν/2)
− such that (α, β, σ, ρ) ∈ J , where

J :=















(α, β, σ, ρ) :

∑

j≤k
αj + βkσk +

∑

j>k
ρkj + hk+1 ≥ β ∀ 0 ≤ k ≤ ν,

ajσk + ρkj ≤ αj ∀ n ≥ j > k

∀ 0 ≤ k ≤ ν.
σ, ρ ≤ 0, αj ≥ 0, ∀j ∈ R














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Proof idea

We saw that the set of valid inequalities is characterized by

fk(α) := min







∑

j>k

αjzj : z ∈ Pk






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

We don’t have a good characterization for this solution, but if ai = 1 for all j such that
αj < 0, then we can easily characterize the solution to fk(α).
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Proof idea

We saw that the set of valid inequalities is characterized by

fk(α) := min







∑

j>k

αjzj : z ∈ Pk







We don’t have a good characterization for this solution, but if ai = 1 for all j such that
αj < 0, then we can easily characterize the solution to fk(α).

Use such characterization and LP duality to obtain the formulation.
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Properties of facet-defining inequalities for conv(Q)

Lemma (Abdi and F.)

Suppose that the inequality

y +
∑

j∈[n]

αjzj ≥ β (4)

is facet-defining for conv(Q). Then

(i) (α, β) is an extreme point of G,

(ii) β = h1 + f0(α), and

(iii) if αk < 0 for some 1 ≤ k ≤ n, then ak > 0.

Note: f0(α) := min

{

∑

j∈[n] αjzj :
∑

j∈[n]

ajzj ≤ p

}
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Implications

Consider the cardinality constrained case (aj = 1, ∀j).

MIP chance Dec 4, 2012 28 / 40



Implications

Consider the cardinality constrained case (aj = 1, ∀j).

Suppose I have a partition R,S of [n], with αj < 0⇒ j ∈ S and αj > 0⇒ j ∈ R.

MIP chance Dec 4, 2012 28 / 40



Implications

Consider the cardinality constrained case (aj = 1, ∀j).

Suppose I have a partition R,S of [n], with αj < 0⇒ j ∈ S and αj > 0⇒ j ∈ R.

Suppose |S | ≤ p

MIP chance Dec 4, 2012 28 / 40



Implications

Consider the cardinality constrained case (aj = 1, ∀j).
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Then f0(α) := min

{

∑

j∈[n] αjzj :
∑

j∈[n]

ajzj ≤ p

}

=
∑
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αj , hence any such
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Suppose |S | ≤ p

Then f0(α) := min

{

∑

j∈[n] αjzj :
∑

j∈[n]

ajzj ≤ p

}

=
∑

j∈S
αj , hence any such

facet-defining inequality will have the form:

y +
∑

j∈R

αjzj +
∑

j∈S

αjzj ≥ h1 +
∑

j∈S

αj

y +
∑

j∈R

αjzj +
∑

j∈S

∆j (1− zj ) ≥ h1

with α,∆ ≥ 0
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Luedtke et al.’s inequalities

Luedtke et al.’s inequalities for the cardinality constrained case:

Theorem (Luedtke et al.)

Let m ∈ {1, . . . , p}, R = {r1, . . . , ra} ⊆ {1, . . . ,m} and
S = {q1, . . . , qp−m} ⊆ {p + 1, . . . , n}. For m < p, define ∆m

1 = hm+1 − hm+2 and

∆m
i = max

{

∆m
i−1, hm+1 − hm+i+1 −

i−1
∑

j=1

∆m
j

}

, i = 2, . . . , p −m

Then, with hra+1 = hm+1,

y +
a

∑

j=1

(hrj − hrj+1)zrj +

p−m
∑

j=1

∆m
j (1− zqj ) ≥ hr1

is valid for Q and facet-defining if hr1 = h1
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Validity proof

Note: 0 ≤ ∆m
1 ≤ ∆m

2 ≤ . . . ≤ ∆m
p−m

G :=







(α, β) ∈ R
n × R :

∑

j≤k

αj + fk (α) + hk+1 ≥ β,∀ 0 ≤ k ≤ ν.







In this case, ν = p. Note that S ⊆ {p + 1, . . . , n}, so j ∈ S ⇒ j > ν = p.

fk(α) := min







∑

j>k

αjzj : z ∈ Pk







fk (α) := min







∑

j∈S

−∆m
j zj :

∑

j∈S

zj ≤ p − k







= −

p−m
∑

j=k−m+1

∆m
j
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∑

j≤k

αj + fk(α) + hk+1 ≥ β

becomes
∑

j≤k:j∈R

αj −

p−m
∑

j=k−m+1

∆m
j + hk+1 ≥ h1 −

∑

j∈S

∆m
j ⇐⇒

∑

j≤k:j∈R

αj +

k−m
∑

j=1

∆m
j + hk+1 ≥ h1

Note that
∑

j≤k:j∈R
αj = h1 − hrt for some rt > k .

∑

j≤k:j∈R

αj +

k−m
∑

j=1

∆m
j + hk+1 ≥ h1

So if k < m
∑

j≤k:j∈R

αj +

k−m
∑

j=1

∆m
j + hk+1 = h1 − hrt + hk+1 ≥ h1

And if k ≥ m, ∆m
k−m ≥ hm+1 − hm+k−m+1 −

k−m−1
∑

j=1

∆m
j so

∑

j≤k:j∈R

αj +
k−m
∑

j=1

∆m
j + hk+1 ≥

∑

j∈R

αj + hm+1 − hk+1 + hk+1 = h1 − hra+1 + hm+1 = h1
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More inequalities for the cardinality constrained case

Theorem (Küçükyavuz, 2012)

Suppose that aj = 1 for all j ∈ [n]. Take a positive integer m ≤ ν = p. Suppose that

(i) R := {r1, . . . , ra} ⊂ {1, . . . ,m}, where r1 < . . . < ra; and

(ii) S ⊂ {m + 2, . . . , n} and take a permutation of the elements in S,

ΠS := {q1, . . . , qp−m} such that qj > m + j for all 1 ≤ j ≤ p −m.

Set ra+1 := m + 1. Let ∆1 := hm+1 − hm+2, and for 2 ≤ j ≤ p −m define

∆j := max
{

∆j−1, hm+1 − hm+1+j −
∑

(∆i : qi > m + j , i < j)
}

.

Then the (T ,ΠL) inequality

y +

a
∑

j=1

(hrj − hrj+1)zrj +

p−m
∑

j=1

∆j(1− zqj ) ≥ hr1 (5)

is valid for conv(Q). Furthermore, (5) is facet-defining inequality for conv(Q) if and only

if hr1 = h1.
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Theorem (Abdi and F.)

Take an integer 0 ≤ m ≤ ν such that p − sm is an integer. For each 1 ≤ j ≤ p − sm, let

k(j) := max{k : j ≥ sk − sm}. Let

(i) R := {r1, . . . , ra} ⊂ {1, . . . ,m} where r1 < . . . < ra;

(ii) S := {q1, . . . , qs} ⊂ {m + 2, . . . , n} where s = p − sm and qj > k(j) for all
1 ≤ j ≤ p − sm; and

(iii) S is chosen so that aj = 1 for all j ∈ S, and aj ≤ sm for all j /∈ S.

Set ra+1 = m + 1. Let ∆q1 := hm+1 − hk(1)+1, and for 2 ≤ j ≤ p − sm, define

∆qj := max
{

∆qj−1 , hm+1 − hk(j)+1 +
∑

(∆qi : qi > k(j), i < j)
}

. (6)

Then

y +
a

∑

j=1

(hrj − hrj+1)zrj +
∑

i∈S

∆i (1− zi ) ≥ hr1 (7)

is a valid inequality for conv(Q). Furthermore, (7) is a facet-defining inequality for

conv(Q) if and only if hr1 = h1.
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Extended formulation

Kücükyavuz (2012):

If (y∗, z∗) is an extreme point of conv(Q), then y ∈ {h1, h2, . . . , hν+1}.

For each 0 ≤ k ≤ ν, let

Qk+1 :=







(y , z) ∈ {hk+1} × {0, 1}
n :

∑

j∈[n]

ajzj ≤ p, zj ≥ 1 ∀ j ≤ k







.

Rk+1 :=







(y , z) ∈ {hk+1} × [0, 1]n :
∑

j∈[n]

ajzj ≤ p, zj ≥ 1 ∀ j ≤ k







.

conv(Q) = conv(
⋃ν+1

k=1 Qk) + C ⊆ conv(
⋃ν+1

k=1 Rk) + C

This leads to a polynomial-size extended formulation that is exact in the cardinality
constraint case.
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(y , z) ∈ {hk+1} × [0, 1]n :
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j∈[n]

ajzj ≤ p, zj ≥ 1 ∀ j ≤ k







.

conv(Q) = conv(
⋃ν+1

k=1 Qk) + C ⊆ conv(
⋃ν+1

k=1 Rk) + C

This leads to a polynomial-size extended formulation that is exact in the cardinality
constraint case.

How strong is such extended formulation in the general case?
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Extended formulation

Theorem (Abdi and F.)

Let EQ be the extended formulation obtained as described. Then

projy,z (EQ) ⊆























(y , z) ∈ R+ × [0, 1]n :

y + hjzj ≥ hj ,∀j = 1, . . . , n
n
∑

j=1

ajzj ≤ p

y +
n
∑

j=1

αjzj ≥ β ,∀(α, β) ∈ G1























where G1 is the set of coefficients of valid inequalities that are only allowed to have

negative coefficients for all j such that aj = 1.

Note: Using similar arguments, one can derive polynomial size extended formulations
which have even better provable strength.
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A better extended formulation

Bienstock (2008) gave polynomial-size formulations that have arbitrarily close gap to the
convex hull of 0-1 solutions to the knapsack set.
Can we use his results in this context?
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A better extended formulation

Bienstock (2008) gave polynomial-size formulations that have arbitrarily close gap to the
convex hull of 0-1 solutions to the knapsack set.
Can we use his results in this context?
Take M > 0 and let

GM = {(α, β) ∈ G : αj ≥ −M,∀1 ≤ j ≤ n} .

Theorem (Abdi and F.)

For any M > 0 and ǫ > 0 there exists a polyhedron RQ such that conv(Q) ⊂ RQ, and
if (y∗, z∗) ∈ RQ and y +

∑n

j=1 αjzj ≥ β is a valid inequality of conv(Q) whose
coefficients, αj , are bounded below by −M, then

y
∗ +

n
∑

j=1

αjz
∗
j ≥ β − ǫMn.

Moreover, RQ can be described explicitly as the projection of a polyhedron of dimension

O
(

ǫ−1n1+⌈1/ǫ⌉ν
)

that is described by O
(

ǫ−1n2+⌈1/ǫ⌉ν
)

constraints.

MIP chance Dec 4, 2012 36 / 40



Computational experiments
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Conclusion

Studied mixing set with a knapsack constraint

Characterized valid inequalities that do not come from knapsack polytope

Used it to derive polynomial-time separation of a large class of valid inequalities

Used it to generalize previous inequalities for the cardinality constrained case

Extended formulation

Future work:
◮ Computational experiments
◮ Other classes of inequalities
◮ Other applications of the studied set

Take away: Try to reduce the complexity of the negative part!
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"The important thing is to realize the positive side

and try to increase that; realize the negative side

and try to reduce.

That’s the way."

Dalai Lama
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