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Motivation

Motivation

m Consider the following general dynamics for a diffusive stochastic volatility

model:
1
dX, = —&idi+ VERW!, Xo== (1)
| Xt =In St
m ¢ = (&, ¢ < u): instantaneous forward variance curve from ¢ onwards.
&" = driftless process; initial value y“ read on market prices of variance
swap contracts: £§ = % (Eriu), where &, is the implied variance swap
volatility for maturity w.
m A= (A1,...,Aq): volatility of forward instantaneous variances.
= W= (W'...,W% = a d-dimensional Brownian motion. W' drives the

spot dynamics.

m No dividend. Zero rates and repos (for the sake of simplicity)
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No closed-form formula available for the price of vanilla options in
Model (1).

Approximations available in a few particular cases of “first generation”
stochastic volatility models (e.g., Heston)

Our goal: find a general approximation of the smile which does not
depend on a particular specification of the model, i.e., on a particular
choice of A.

= We will derive general asymptotic expansion of the smile, for small
volatility of volatility, at second order.

Scaling factor e: A — eA. X and £ then depend on ¢: X — X°© and
§—=&.

Two important assumptions: no local volatility component, and A does
not depend on the asset value.

Bloomberg L.P.

Stochastic Vol

rderly Smiles



Motivation

m Smile produced by stochastic volatility models is generated by the
covariance of forward variances with themselves and spot.

m Our goal: to pinpoint exactly which functionals of these covariances
determine the vanilla smile

m Important to ensure, while varying ¢, that implied volatilities of some
specific payoffs are unchanged, so that the overall volatility level is not
altered in the model.

m In our framework, VS volatilities are unchanged as ¢ is varied.
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Expansion of the smile
0000000

Expansion of the price

Expansion of the price of a vanilla option

m Consider the vanilla option delivering g(X7) at time 7.

m Price P° (t,X{,£,F). We write P° (t,z,y): the variable
y= (", t<u<T)is acurve.

m P* solves the PDE (9; + L®) P° = 0 with terminal condition
P*(T,x,y) = g(x), where L* = Lo + L1 + ¢* Lo with

— _1 t 1 t a2
T
Ly = / du p(t, u,y) Oayu
t
L = l/Td /Td , (t l )82
2 = 2/, U . w v u,usY) Oy
u E |%tder|e, =
E dXd = S t t Yy
pltu,y) = Vythatuy) = [dXedi'|E = y] _ [ : ]
dt dt
: ~ o E [derdet’ | = o]
V(tvuau:y) - Z i(t,u,y) i(t»uvy) - dt

i=1
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Expansion of the smile
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Expansion of the price

The perturbation equations

m Assume that P = Py + &Py + 2P, + &3Py + - - -

0 = (+Lo+eli+e’Lo) (Po+ePi+e’Pa+e’Ps+---)
(0t + Lo) Po+ e ((0¢ + Lo) Pr + L1 Py)
+&2 ((Br + Lo) Po + L1 Py + L2 Py)
+&° ((8¢ + Lo) Ps + L1 P + Lo Py) + - - -

m = We need to solve the following equations:

(8,5 —+ L()) Py, = 0, Po(TﬂE,Z/) = g(I)
(Oc+Lo)Pr+LiPy = 0, Pi(T,z,y)=0
(8t+LO)Pn+L1Pn—1 +L2Pn—2 = Oa Pn(T7:C7y) :07 V’I’LZQ
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Expansion of the smile
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Expansion of the price

m Lo = infinitesimal generator associated to X°, the unperturbed diffusion
for which ¢ = 0. Lo = standard one-dimensional Black-Scholes operator
with deterministic volatility v/y? at time ¢.

m Each P, = solution to the traditional one-dimensional diffusion equation
with a source term H,, = L 1P, 1 + LaP,_o:

(8t+LO)Pn+Hn :0
m Feynmann-Kac theorem =-
Po(t,z,y) = E[g(Xg")],

P.(t,z,y) = U H, (s, X2"" 4)ds| , Vn > 1

where X% is the unperturbed process where ¢ = 0, starting at log-spot
T at time t:

1
dx0hT = —5y5ds + VY dWy, X0hT — g
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Expansion of the smile
000000

Expansion of the price

The price at order 0

m P, is just the Black-Scholes price with time-dependent volatility /y*:

T 1 /7 T
Py(t,z,y) =E {g (a: —|—/ VyEdwl — 5/ ysds>} = Pgs (m,/ ysds)
t t t

where
Pps(z,v) = E {g (x G — %uﬂ L G~NO,) (2)

mv= ftT y®ds is the total variance of X° integrated from ¢ to T
m Py(t,z,y) depends on the curve y = (y°,¢t < s < T) only through v.
m Ppgg is solution to the PDE

1
OwPps = 5 (&% —899) Pgs, PBs(ZU,O) :g(w) (3)
Links the vega and gamma of a vanilla option in the unperturbed state.
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Expansion of the smile
0000e00

Expansion of the price

The price at order 0

An important observation:

m Because Ly incorporates no local volatility, Lo and 9, commute so
(at + Lo) 0P Py = 0% (Bt =+ Lo) Py, =0.

m = 0L Pgps (X?,ftT ysds) = 0P Py(t, X?,v) is a martingale for all integer

m Equation (3) then shows that for all integers m,n,
ool Pes (X?,ftT ysds) is a martingale.

m This is crucial in the computations of P, and Ps.
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Expansion of the smile
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Expansion of the price

The price at order 1

m Let us define the integrated spot-variance covariance function C;**(y):

. [45=dex e, = o]
Cg(y /ds/ du p(s,u,y) = /ds/ I

m We then have

T
P(t,z,y) = E / L1P0(S,X2’t’z,y)d8}
LJ t

- T T T
= E / ds/ du p(s,u,y) Oyu (BZPBS <Xg’t’z,/ y%ir))]

LSt s s

- T T T
= E / ds/ du pu(s,u,y) 92, Pps (X;“’“”,/ yrdr>]

LSt s s

T T T
= / ds/ du p(s,u,y)E { 02, Pas (XE*”,/ der)]

t s s
T
— ) s (o [ vrar)
¢
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Expansion of the smile
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Expansion of the price

The price at order 2

A similar result holds for the second order correction:

Py

Lo P
Py 0 (tx,y)
P2LlP1

Py (t,,y)

LiP
Pyo  (tz,y)

P2L2P0 +P2LlP1

1 133 2 T T

§Ct (y) avPBS x’/t Yy dr

P2I:éP1 -‘rPQI:iPl

1 xe, \2 4242 T

SO W 020tPas (o [ ar)
t

T
C*(y) 820, Pps <x,/ yrdr)
t

T T T T T T E [d£§d§§/|§s = y}
Cf's(y) = / ds/ du/ du' v(s,u,u’,y) = / ds/ du/ du’ I
t s s t s s

et = [ s [ duntsnn) o (6X50))
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Expansion of the smile
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Expansion of the implied volatility

Expansion of the implied volatility

m We write CX¢ = CX%(y), C% = C§(y) and C* = C4(y).
= In the general diffusive stochastic volatility model (1), at second
order in the vol of vol ¢, the implied volatility for maturity 7" and

strike K is quadratic in L = In (é‘—o)

(T, K) = 8™ 1 Srin (g) 4 Crpin? (%) L0 (4)

m Coefficients are

2 2
oS A {1—1— x4+ 3; 3 (12 (C’X£> —v(v+4)C* +4v (v —4) C”)}
_ oavs| & xe € (4em x¢\?
Sr = TLC’ + 55 (40 (c))]
2
Cr = & 864 (4C%+Off 6 (c) )

mv= fOT & ds and 6> = /%, the VS implied volatility for maturity 7.
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Expansion of the smile
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Expansion of the implied volatility

Comments

ATM implied volatility:

2
€ X¢ 3
—C
4v + 3203

A = o 1+

(12 (ng)2 —v(v+4) O +4v (v —4) C“)}

m ATM implied volatility = variance swap volatility 4+ spread. At first order,
cX¢
4T

m Typically, on the equity market, CX¢ < 0: ATM implied volatility lies
below the variance swap volatility.

spread = €.

m When spot returns and forward variances are uncorrelated, CX¢ = C* =0
so that )
~ATM __ ~VS € 133
o =67 (1— mv(v—i—él)C )
Because C'*¢ > 0, ATM implied volatility lies again below variance swap
volatility. The higher the volatility of variances, the smaller the ATM
implied volatility.

Julien Guyon Bloomberg L.P.

Orderly Smiles



Expansion of the smile

[e]e] le]e}

Expansion of the implied volatility

Comments (continued)

ATM skew: Sp = 65 [55C¥¢ 4 25 (1070 — 3 (X))

m ATM skew St is of order e. It has the sign of C*¢. Sy vanishes when
spot returns and forward variances are uncorrelated, even at second order.
ATM skew is produced only by the spot-variance correlation.

m Link ATM vol-VS vol-ATM skew:

~VS\ 2
o T
GATM _ 5V | ( T2) Sr

m At first order in £, ATM skew has same sign as the difference between

ATM implied volatility and variance swap volatility.

ATM convexity: Cr = 6%5% (4C“v +C%v—6 (ng)Q)

m Curvature Cr is of order 2.

m Not only does it involve variance/variance covariance: spot/variance
covariance (squared) contributes as well.
céé

2
srzvre 2 0

m If spot and variances are uncorrelated, Cr =

Julien Guyon Bloomberg L.P.
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Expansion of the smile
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Expansion of the implied volatility

Another derivation which stays at the level of operators

m Recall that the price P° of the vanilla option is solution to
(O + L5) P* =0 with L§ = Lo + €L, + €°La,, and terminal condition
Pe (Tv €T, y) = g(:r)

m Price can be expressed in terms of the semigroup (U5, 0 < s <t <T)
attached to the family of differential operators L: P*(t,-) = Usrg.

m The semigroup is defined by

Usy = lim (1—6tL;) (1 —6tL;)--- (1 —0tL;, ), ot= t;S, ti = s+idt

n—r00

m It satisfies U7, = U7, Us, for 0 <r < s <t < T, hence the notation
: exp (f: Lidr) :, where :: denotes time ordering.

m We can directly expand Ug,; in powers of €. Usual time-dependent
perturbation technique in quantum mechanics. U, is called the free
propagator.

Julien Guyon Bloomberg L.P.
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Expansion of the smile

[e]e]e]e] }

Expansion of the implied volatility

m Consider the general situation where a differential operator L. is perturbed
by another operator H;: L = Ly + eH;

m From the definition of the semigroup, US, = US(?) + EUS(tl) + 52U5<t2> I
with

t
v = [arutmon
St t

Us(tQ) = / dTl/ dT2 UngHq—lUngth2U$2t
S T1
B = P =Py +eP, +e?Py+---, with

T
P = /dT UprL1,-Ulrg
t

T T T
P = / dr Up Ly Ulrg + / dr / drs Upn L1, UL 1y Ly Uy g
t t T1

m We recover the expressions of P; and Ps.
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Asymptotics
o

Short maturity

Short maturity

m Assume d¢f = - --dt + ¢(£})¥d By
m Let psy be the correlation between S; and instantaneous variance V; = &}
m Heston: ¢ = 1, psv = p;

Bergomi: ¢ =1, psv = ap (1 — 0)psx + Opsy)
m Then for short maturities

Zp (aATM)&P*2 (5)

(o) +m) @™ @

m = Short-term ATM skew does not depend on short-term ATM vol iff
@ =1 (observed in equity markets)

So

12

Co

1

m = Short-term ATM convexity does not depend on short-term ATM vol iff
©=23.And (Vpsv, Co > 0) < ¢ >3

Julien Guyon Bloomberg L.P.
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Asymptotics

Long-term asymptotics of implied volatility

Long-term asymptotics of implied volatility

m Assume the term-structure of variance swaps volatilities is flat: &5 = €.
m Assume that for large u —t, p(t,u,y) o< (u —¢)™%, a > 0.
Then at higher order in ¢, for long maturities,
Sr x T7¢ ifa<l
Sr o« T ifa>1
a is exactly a signature of the long-time decay of the spot/variance
covariance function.
m Assume that for large u — ¢ and v’ — ¢,
v(t,u,u',y) o< (u—t) P’ — )77, B> 0.
Also assume that spots and volatilities are uncorrelated (1 = 0). Then at
higher order in ¢, for long maturities,
Cr o« T ifp<l
Cr « T2 iff>1

m Exponential decay <» g > 1.

Julien Guyon Bloomberg L.P.
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Heston model

First example: a Heston-like model

dX; = —étht + VVidW}, Xo==z (7)
Vi = —k(Vi—Vio)dt+ A (Vi)? (detl +/1- pdeE) Vo=V

m The instantaneous forward variance reads
& = E[Vu|Vi] = Voo + (Vi — Vo) e 70

and its dynamics is:

et = e k@t (g)w (Pthl + /1_ pdetQ)

m The initial term-structure of instantaneous forward variances is
Y=Y = Voo 4 (v — voo) €
m Like in all classic “first generation” stochastic volatility models, this
term-structure is determined by the model parameters, and the current
value of the instantaneous volatility.

Julien Guyon Bloomberg L.P.
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Heston model

m The volatility A(¢,u,y) of instantaneous forward variances depends on the
instantaneous forward variance curve y = (y°,¢t < s < T') only through the
instantaneous spot variance y':

Mtuy) = p(y')Te D
Xo(tuy) = /1—p2 (yf)7 e F

m As a consequence,

Xe - syt _ L —k(T—s)
@ = k/ ds ()7t (1-e7070)
2 T
1 s e (T—s)\ 2
o = Z/ ds(/ du,\i(s,u,y)) zﬁ/ ds (y )w(l_e k(T ))
i=170 s 0
2 T
cr = (p_l'_l &/ ds ( (P+2/ du ( «pf% —k(u—s) (l_e_k(T_u))
2) k J

m This coincides with Equations (3.7) to (3.10) in Lewis [7], where
J = cX¢, J®) — %C&, and J@® = o~

Julien Guyon Bloomberg L.P.
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Bergomi model

Second example: the Bergomi model

de, = —%g,fdt +Eawy?
dEd = Elagw ((1 — @) e FxumD g X 4 gehy ("’t)thY)

= \t,u,&) - dW;
AW, WX, = psxdt, dWS, WYY, = psydt, d(WX, W), = pxydt.
m The normalizing factor

ap = ((1—0)% +2pxy0(1—0) +6%) "

is such that the very-short term variance £/ has log-normal volatility w.

m We pick kx > ky, 0 is a parameter which mixes the short-term factor
W and the long-term factor WY .

Julien Guyon Bloomberg L.P.
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Bergomi model

m After a Cholesky transform, this can be restated using independent
Brownian motions W', W2 and W? as follows:

we® = w!

w psx W'+ /1 — p2 W?

WY = psy W'+ xxvy/1—pd, WP+ \/(1 —X&y) (1= p2y )W?
h — _PXY_PSXPSY
MY T Sy
® psx, psy and pxy define a correlation matrix < xxy € [-1,1].
m The volatility of variance A = (A1, A2, A3) reads

A1 (t, u, y) — y"ag ((1 _ 0) pSXeikX (u—t) + apsyefky(uft))
Aa(t,uy) = ylae ((1 —0)\J1 = pEyetxmD 4 QXXY\/@e#W(“*t))
A3(t,ua y) = yuagﬁ\/(l - X?XY) (1 _ p?gy)efky(uft)

m We write A; (t,u,y) = y“ o (wixefk"(uft) + wiyefk”("ft))

Julien Guyon Bloomberg L.P.
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Bergomi model

The covariance functions read

T u
/ du/ dt\/yt A (t, u, y)
0 0
T u
= (1—9)psx/ du y“/ dty/yte Fx U=t
0 0
T u
+Oéo(9psy/ du y“/ dt\/ytefk”("ft)
0 0

3 T T 2
¢ — Z/ ds (/ du)\i(s,u,y)>
i=1 70 s
3 T T T 2
= aﬁZ/ ds (wix/ du yue_kX(u_s) —|—wiy/ du y“e_k"(u_s))
i=1 70 s

T T
cr = / ds/ du s (s, u, y* ( / dt)i (u,t,y
; i ( N "
“ oA
s [t o)

cxs

Julien Guyon Bloomberg L.P.
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Bergomi model

In the case of a flat initial term structure of variance swaps (v = &), this reads

C* = g’ T? (wix T (kxT) + wiy T (ky T))
o = a3w2§2T3 (wo + wxZ(kxT) +wyZ(kyT)
+wxxZT(2kxT) + wyyZ(2kyT) +wxyZ((kx + ky)T))
CU — agw2£2T3 (Cf, +C§)
with
Z(a) = % y(u):a”a%_“
Koy = toeTTmeem? iy T@ oK@

@

3 w, w, 2 3w, w; w;
X Y X e iy
wo = Z(l 4+ 2 ),wX:—2E i (7 4 )

kxT  kyT 2 kxT \kxT | kyT

w = 2 Wiy (“’iX n in)
Y - - )
i=1 kyT \kxT  kyT
3w 3 2 R
iX = iy _ iX Wiy
wx X = 2272 wa*Zﬁ, wxyfzziz
=1 k% T =1 k2T S kxky T

Bloomberg L.P.




Bergomi model

1, 1, J (kyT) — J (kxT)
woo_ - - _
c swixH(kxT) + swiyH(ky T) —wixwiy (by —kx)T

. P / " "
Cy = wxJ kxT)+wyT (kyT) +wxxJ 2kxT) + wyy T (2kyT)
”
+wxyJ ((kX + kY) T)
with

" wix | wixwiy 0wy | wixwiy

W = +———, wy= o

kxT ky T ky T kxT
Wi - 71U%X7 Wiy = - AY oy o MIXWLY MX Y
kxT ky T kxT ky T

Bloomberg L.P.
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Bergomi model

integrated covariance functions in the Bergomi model, omega = 400%
10%
8% X Xi
—8—C_xi_xi /
6% C_mu /

4%

2%

0%

2%

-4%

-6%

-8%

-10%

maturity in years
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Numerical experiments
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First order

Numerical experiments

We pick the Bergomi model with a flat initial term structure of variance swap
prices and

0 kx | ky | psx | psy | pxy | xxy | &
0.25 | 8 035 | -0.8 | -048 | 0 -0.73 | (0.2)?

instantaneous volatility of VS volatility at inception, omega = 400%

160%
140% *

—=—power law form, with exponent 0.4
120% s >

‘gomi model

100%

80%

60%

1 2 3 4 5 6 7 8

maturity of the VS in years
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Numerical experiments
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First order

First order

ATM implied volatilty

20.0%

19.8%

19.6%

19.4%

19.2%

19.0%

18.8%

18.6% —e—omega = 20%, order 1 —#—omega = 20%, MC

omega = 60%, order 1 omega = 60%, MC
18.4%
—¥—omega = 200%, order 1 —e—omega = 200%, MC

18.2%

maturity in years




First order

First order

Numerical experiments
[e]e] lele]le]

6%

5%

4%

3%

2%

1%

0%

ATM skew

—e—omega = 20%, order 1

mega = 20%, MC

omega = 60%, order 1

omega = 60%, MC
—*—omega = 200%, order 1
—e—omega = 200%, MC
~+=omega = 400%, order 1

~——omega = 400%, MC

4 5 6 7 8

maturity in years




Numerical experiments
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First order

First order

smile, omega = 60%

24%

——1Y, order 1

23%
—=—1Y,MC
3Y, order 1
22%
3Y,MC
—*—8Y, order 1
21%
—e—38Y, MC
20%
19% \ —
18%
0% 50% 100% 150% 200% 250%

strike as percentage of initial spot




Numerical experiments
000080

First order

First order

smile, omega = 200%

40%

——1Y, order 1
35%
—=—1Y,MC

3Y, order 1

30%
3Y,MC

—*—8Y, order 1

y
25% —e—8Y,MC

20% |

15%

10%

0% 50% 100% 150% 200% 250%

strike as percentage of initial spot




Numerical experiments
O0000e

First order

First order

m ATM skew very sharply estimated by the first order expansion, even
for large values of the volatility of variance w.

m ATM volatility well captured by the expansion at first order in w only
for small values of w (say, up to 60%).

m True ATM implied volatilities are below their first order approximates =

ATM volatility is a very concave function of w, around w = 0. In view of

the expression for 27", this means that, for the set of parameters picked,

120%¢2 — G5y (v +4) + 4C*v (v —4) < 0

m Global shape of smile well captured by first order expansion: the true
implied volatility for strike K is indeed approximately affine in In(K/So).

m But level of smile well captured only for small values of w.

Julien Guyon Bloomberg L.P.
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Numerical experiments
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Second order

Second order

We first consider the situation when spot returns and forward variances are
uncorrelated. In this case, the ATM skew vanishes, and so does its expansion at
second order in w. We pick

0 kx | ky | psx | psy | pxy | &
0258 [035]0 0 0 (0.2)?

instantaneous volatility of VS volatility at inception, omega = 400%

160%

140% \ ‘gomi model

~=—power law form, with exponent 0.4
120%

100%

80%

60%

40%

20%
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Second order

Second order

Numerical experiments

O®0000000000

20.0%

19.5%

19.0%

18.5%

18.0%

17.5%

at-the-money implied volatility

omega = 120%, order 2 omega = 120%, MC
—*—omega = 200%, order 2 —e—omega = 200%, MC

—+—omega = 400%, order 2 ——omega = 400%, MC

2 3 4 5 6 7 8

maturity in years




Numerical experiments

0O0@000000000
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Second order

smile, omega = 120%

22.0%

—&— 1Y, order 2

21.5% —=-1v.mMC
3Y, order 2

3Y, MC
21.0%

—*—8Y, order 2

—e—38Y, MC

20.5%

19.5%

0% 50% 100% 150% 200% 250%

strike as percentage of initial spot




Second order

Second order

Numerical experiments

0O00@00000000

28%

27%

26%

25%

24%

23%

smile, omega = 200%

—&—1Y, order 2

—&—1Y,MC
3Y, order 2
3Y,MC

—*—8Y, order 2

—e—8Y,MC

22%

21%

N\ 7

20% |

19%
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Numerical experiments
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Second order

Second order

smile, omega = 400%

29% —e—1Y, order 2
—=—1Y, MC

27% 3Y, order 2
3Y,MC

25% —*—8Y, order 2
—e—8Y, MC

23%

21%

19%
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0% 50% 100% 150% 200%
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Numerical experiments

0O0000e000000
Second order

Second

ATM implied volatility very sharply estimated by the second order
expansion, even up to w = 400% and to long maturities. For T'= 15
years, estimate is less than 15 bps above true ATM volatility.

Looking at the whole smile: second order expansion of the implied
volatility is excellent around the money, but becomes too large for strikes
far from the money.

Not surprising: No arbitrage = for very small and very large strikes,
(T, K)?* grows at most linearly with In(K/So) (see Lee [6]), whereas
second order estimate for 5(T, K)? grows like In*(K/Sy), see (4).
Remainder O(w?) = R(w, T, K) is large for large K, for finite w.

m Nevertheless, even for w = 400%, a maturity of 8 years and an
out-the-money strike of 250%, the error is only 1.5 point of volatility.
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Numerical experiments
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Second order

We now check numerically the accuracy of the second order expansion of the
smile in the general case of correlated spot returns and variances.
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Numerical experiments
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Numerical experiments
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smile, omega = 120%
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Numerical experiments

000000000080
Second order

Second order

smile, omega = 200%

25% —e—1Y, order 2
—=—1Y,MC
23% 3Y, order 2
3Y,MC
21% —*—8Y, order 2
—e—8Y,MC
19%
17%
15%
13%
0% 50% 100% 150% 200% 250%

strike as percentage of initial spot




Numerical experiments
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Skew and skewness

m Remember S7 = - 3/2\F5+ O( )
m Let us now compute the skewness st of log-returns:
E [A3 T
T = %7 Xr=Xr —E[Xr] = / f’detl
E [X7] 0
» We have E [X3] = [ €ldt + O(¢) and
E [X%] =3:C%* +0 (52)

m At first order in the vol of vol, the skewness of (the distribution of)
In (ST/S()) is thus
B 3eC™¢

ST

m The ATM skew St simply reads

St =

ST
6vVT
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Conclusion

Conclusion

m We provide an expansion at order two in volatility-of-volatility for general
stochastic volatility models based on a forward variance formulation.

m VS volatilities for all maturities are unchanged as ¢ is varied.
m At order two in ¢, the smile is exactly quadratic in log-moneyness and
depends on only three model-dependent dimensionless quantities:

m CX¢ the integrated spot/variance covariance function,

m C%, the integrated variance/variance covariance function,

m CH, which, like C%€, depends only on instantaneous spot/variance
covariances.

m We shed light on the significance of C**¢ by establishing a simple link
between the ATM skew and the skewness of In St.
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Conclusion

m From our general expression we derive the short-maturity limits of ATM
volatility, skew, curvature: we give structural dependencies of the ATM
skew and curvature on ATM volatility.

m We also link the long-term decay of the ATM skew and curvature to the
decay of spot/variance and variance/variance covariance functions.

m Numerical experiments in the case of a two-factor version of the Bergomi
model show good agreement of the order one expression for the ATM
skew, and of the order two expression for the ATM volatility, for values of
the volatility of short-dated variance (around 400%) that are typical of
implied levels of equity indices.

Bloomberg L.P.

Julien Guyon

Stochastic Vol



Conclusion

@ Benhamou E., Gobet E. and Miri M., Smart expansion and fast calibration
for jump diffusion, Finance and Stochastics, Vol.13(4), pages 563-589,
2009.

Bergomi L. and Guyon J., Stochastic Volatility’s Orderly Smiles, Risk
Magazine, pages 60-66, May 2012.

Bergomi L., Smile Dynamics 2, Risk Magazine, pages 67-73, October
2005.

Bergomi L., Smile Dynamics 4, Risk Magazine, December 2009.

Backus D., Foresi S., Li K. and Wu L., Accounting for Biases in
Black-Scholes, unpublished.

Lee R., The moment formula for implied volatility at extreme strikes,
Stanford University and Courant Institute, 2002.

) ) W E B &

Lewis A., Option valuation under stochastic volatility, Finance Press, 2000.

Julien Guyon Bloomberg L.P.

Stochastic Volatility's Orderly Smiles



	Motivation
	Expansion of the smile
	Expansion of the price
	Expansion of the implied volatility

	Asymptotics
	Short maturity
	Long-term asymptotics of implied volatility

	Heston model
	Bergomi model
	Numerical experiments
	First order
	Second order

	Skew and skewness
	Conclusion

