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Moment Swaps

A characteristic is a moment-related property of an asset price – or
log return – distribution

Moment swaps are bets on a characteristic

Most common is the variance swap:

pay-off = [rv− vsr]× pv

rv = realised variance – floating, computed at expiry under P

vsr = variance swap rate – fixed, agreed at inception

pv = point value
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Moment Swaps

More generally, two parties exchange:

realised characteristic – floating, computed at expiry under P

swap rate – fixed, agreed at inception

An indicative, or ‘fair-value’ swap rate should be determined by
setting

EQ [pay-off] = 0

This is problematic for standard variance swaps, but not for ‘nice’
moment swaps
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Neuberger (2012) Realised Skewness, RFS

‘Nice’ moment swaps also have the aggregation property:

EM [realised characteristic] is independent of frequency

for any martingale measure M

(But VM [realised characteristic] is dependent on frequency)

For instance, if the underlying is a martingale under P:

EP [RS(annual returns)] = EP [RS(daily returns)]
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Model-Free Fair-Value Swap Rates

The property EQ [pay-off] = 0 for nice moment swaps holds under
minimal conditions – the underlying process must follow a
martingale under Q

For instance, following Harrison and Kreps (1979) it could be the
discounted price process of a non-dividend paying asset in an
arbitrage-free market

This ‘model-free’ property follows because the derivation of the
fair-value swap rate is very simple

Aggregation property ⇒ replication of the realised characteristic
using actual sum over the partition defined in the T&C
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Basic Notation and Assumptions

Denote by tn a partition of the interval t = [0,T ] where T is
the maturity of the variance swap

Let s = {st}t∈t follow a Q-martingale process

So EQ0 [sti ] = s0

And increments ŝi = sti − sti−1 are uncorrelated
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Conventional Variance Swap

For a standard variance swap it is common practice to set:

Realised variance := T−1∑
tn

ln
(
sti/sti−1

)2

Fair-value variance swap rate := 2T−1
∫
R+

k−2q (k,T ) dk

where q(k,T ) denotes the current price of a vanilla option with
maturity T and strike k

In the following we shall ignore the normalization T−1 to ease
notation
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Discrete Monitoring Error

The fair-value swap rate for a standard variance swap is derived by
assuming the realised variance is monitored continuously

This assumption induces an error:

EQ

[
〈ln s〉t −

∑
tn

ln
(
sti/sti−1

)2]
=: εtn (1)

where
〈ln s〉t =: lim

tn→t

∑
tn

ln
(
sti/sti−1

)2
For instance, with stochastic volatility (log returns are not NID)

εtn << 0 during volatile periods
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Jump Error
Also under continuous monitoring, with a generic process having
both jump and diffusion components (Carr and Wu, 2009):

EQ [〈ln s〉t] = 2
∫
R+

k−2q (k,T ) dk+ιt

Therefore, for a standard discretely monitored variance swap with

rv :=
∑
tn

ln
(
sti/sti−1

)2
the fair-value swap rate is actually

vsr∗ = 2
∫
R+

k−2q (k,T ) dk+ιt − εtn
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General f -Swaps

Generalised characteristics relate to some k-dimensional stochastic
process z = {zt}t∈t ∈ Rk with increments ẑi = zti − zti−1

Given a continuous function f : Rk → R we define an f -swap:

realised f -characteristic :=
∑
tn

f (ẑi)

implied f -characteristic = EQ
[∑

tn

f (ẑi)

]

‘true’ f -characteristic = EP
[∑

tn

f (ẑi)

]
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Aggregation Property (Neuberger, 2012)

Assumptions for ‘nice’ f -swaps:

No arbitrage in z

The characteristic f is chosen so that (f , z) satisfies AP:

E

[∑
tn

f (ẑi)

]
= E

[
f
(∑

tn

ẑi

)]
(2)

Here and henceforth E is under a martingale measure

⇒ fair-value f -swap rate depends only on f and T , not on tn
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εtn = 0⇒ Aggregation Property (AP)
The AP follows from the absence of a discrete monitoring error.
Suppose:

E

[
〈z〉ft −

∑
tn

f (ẑi)

]
= 0

where
〈z〉ft := lim

tn→t

∑
tn

f (ẑi)

if the limit exists. Then the implied characteristic must be
independent of the partition tn and in particular

E

[∑
tn

f (ẑi)

]
= E [f (zT − z0)] = E

[
f
(∑

tn

ẑi

)]
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Example in One Dimension
The AP does not hold for (f , x) where x = ln s and f (x) = x̂2:

E

[∑
tn

ln
(
sti/sti−1

)2] 6= E [ln (sT/s0)
2
]

However, Neuberger (2012) finds two alternatives:

the log variance

` (x̂) := 2
(
ex̂ − 1− x̂

)
(3)

and the entropy variance

h (x̂) := 2
(
x̂ex̂ − ex̂ + 1

)
(4)
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AP for the Log and Entropy Variances
The AP holds for (`, x) – and it also holds for (h, x) but only
under the additional assumption of independent increments

E

[∑
tn

` (x̂i)

]
= E

[∑
tn

2
(
ex̂i − 1− x̂i

)]

= E

[
−2
∑
tn

x̂i

]
since E

[
ex̂i
]

= 1

= E

[
2
(

exp
(∑

tn x̂i
)
− 1−

∑
tn

x̂i

)]

= E

[
`

(∑
tn

x̂i

)]
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A Nice Variance Swap

Neuberger (2012) replaces the sum of squared log returns by the
realised log variance, i.e.

rv :=
∑
tn

` (x̂i) =
n∑

i=1
2
(
ex̂i − 1− x̂i

)
Then the fair-value swap can be derived using the standard
gamma-weighted replication theorem (Bakshi and Madan, 2000):

vsr∗ = E [` (xT − x0)] = 2
∫
R+

k−2q (k,T ) dk

It is exact for all partitions and all processes x = ln s, provided only
that s follows a Q-martingale
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Aggregating Log Return Characteristics

Now let z = (x , vg)′ include a generalised variance process

vg ,t = Et [g (xT − xt)] , lim
x̂→0

g (x̂) /x̂2 = 1 (5)

and denote by x̂ and v̂g increments in x and vg respectively

Neuberger (2012) derives the set G of characteristics that satisfy
the AP w.r.t. z:{

φ1x̂ + φ2v̂g + φ3
(
ex̂ − 1

)
+ φ4 (2x̂ − v̂g)2 + φ5 (2x̂ + v̂g) ex̂

}

Carol Alexander and Johannes Rauch Nice Moment Swaps 17 / 38



Introduction
Aggregation Property

Results
Conclusion
References
Appendix

Limitations

G is subject to the following parameter constraints:

if φ4 6= 0, φ5 = 0 and g ≡ ` as defined in (3)
if φ5 6= 0, φ4 = 0 and g ≡ h as defined in (4)
if φ4 = φ5 = 0, vg is any generalised variance

The set G contains a unique third moment characteristic and
no higher moment characteristics

Kozhan et al. (2011) demonstrate empirically that the
skewness and variance risk premiums derived from G are
highly correlated
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Theorem

Let z ∈ Rk be a k-dimensional martingale process derived from
one (or more) tradable assets in an arbitrage-free market. Let ẑ
denote an increment in z. Then

Fz :=
{

f : Rk → R | f (ẑ) = a′ẑ + ẑ′Aẑ, a ∈ Rk ,A ∈Mk
}

forms a vector space over R that contains all twice continuously
differentiable functions f : Rk → R such that the aggregation
property (2) holds w.r.t. (f , z)

We term the elements of Fz martingale aggregating characteristics
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A Simple Example

Let z = s and tn = {0, t,T}

E0
[
(sT − st)

2 + (st − s0)
2
]

= E0
[
Et
[
s2
T − 2sT st + s2

t + s2
t − 2sts0 + s2

0

]]
= E0

[
s2
T − s2

0

]
= E0

[
s2
T − 2sT s0 + s2

0

]
= E0

[
(sT − s0)

2
]
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Generalization

E

[∑
tn

f (ẑi)

]
= E

[∑
tn ẑ′iAẑi

]
= E

[∑
tn tr (Aẑi ẑ′i)

]
= tr E

[
A
∑

tn

(
zti − zti−1

) (
zti − zti−1

)′]
= tr E

[
A
∑

tn

(
zti z′ti − zti−1z′ti−1

)]
= tr E

[
A
(
zT z′T − z0z′0

)]
= tr E

[
A (zT − z0) (zT − z0)

′
]

= E
[
(zT − z0)

′A (zT − z0)
]

= E

[
f
(∑

tn

ẑi

)]
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A Nice Skewness Swap

Let z = (s, v)′ with vt = Et
[
s2
T

]
By construction, z is a martingale

From the theorem we know that

f (ẑ) = ŝ v̂ − 2s0ŝ2

is a martingale aggregating characteristic
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A Nice Skewness Swap

Furthermore, the implied characteristic of the swap equals the
third moment:

f (zT − z0) = (sT − s0)(vT − v0)− 2s0(sT − s0)
2

Hence

E0 [f (zT − z0)] = E0
[
(sT − s0)

(
s2
T −E0

[
s2
T

])
− 2s0 (sT − s0)

2
]

= E0
[
s3
T − s0s2

T − 2s0
(
s2
T − s2

0

)]
= E0

[
s3
T − 3s2

T s0 + 3sT s2
0 − s3

0

]
= E0

[
(sT − s0)

3
]
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A Nice Skewness Swap

The exact fair-value of a swap that pays

realised skewness :=
∑
tn

(
ŝi v̂i − 2s0ŝ2

i

)
can be evaluated according to the replication theorem of Bakshi
and Madan (2000):

implied skewness = EQ
[
(sT − s0)

3
]

= 6
∫
R+

(k − s0) q (k,T ) dk
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Conjecture

Let z ∈ Rk be a k-dimensional martingale process derived from
one (or more) tradable assets in an arbitrage-free market and set
y = (z, ln z) ∈ R2k with ŷ =

(
ẑ, l̂n z

)
∈ R2k . Then

Fy :=
{

f : R2k → R
∣∣∣ f (ŷ) = a′ŷ + b′

(
el̂n z − 1

)
+ ẑ′Aẑ + ẑ′Beγ l̂n z,

a ∈ R2k ,b ∈ Rk ,A,B ∈Mk
}

forms a vector space over R that contains all twice continuously
differentiable functions f : Rk → R such that the aggregation
property (2) holds w.r.t. (f , y)

We term the elements of Fy aggregating characteristics
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Application to Generalized Moment Swaps

Our vector space of aggregating characteristics contains many
m-th moment characteristics for m = 2, 3 and even 4, 5, . . .

Thus we can design ‘nice’ moment swaps, which have the following
properties:

A model-free fair-value swap rate may be determined exactly
(model-free in the sense that all we need is the no-arbitrage
assumption)

The realised characteristic may be defined according to any
partition of [0,T ]
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Fundamental Contracts

The fair-value swap rate for these ‘nice’ moment swaps can be
related to a few fundamental contracts, each derived from the
market prices of vanilla options using the standard replication
theorem

Some of these contracts (e.g. the log, entropy and squared log
contracts) are already familiar from previous research
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Log Contract
The log contract pays xT = ln sT at maturity

Fair value:

LT := EQ [xT ] = x0 −
∫
R+

k−2q (k,T ) dk

Under a GBM with constant volatility σ

LT = x0 −
1
2σ

2T

Intuitively, the implied total variance of the log contract is

v` = 2 (x0 − LT ) = 2
∫
R+

k−2q (k,T ) dk
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Entropy Contract
The entropy contract pays sT xT = sT ln sT at maturity

Fair value:

HT := EQ [sT xT ] = s0x0 +

∫
R+

k−1q (k,T ) dk

Under a GBM with constant volatility σ

HT = s0x0 +
s0
2 σ

2T

Intuitively, the implied total variance of the entropy contract is

vh = 2
(
s−1
0 HT − x0

)
= 2s−1

0

∫
R+

k−1q (k,T ) dk
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Squared Log Contract

The squared log contract pays x2
T = (ln sT )2 at maturity

Fair value:

SQT := EQ
[
x2

T

]
= x2

0 + 2
∫
R+

(1− ln k) k−2q (k,T ) dk

Under a GBM with constant volatility σ

SQT = x2
0 + σ2T

(
1− x0 +

1
4σ

2T
)

Intuitively, the implied total variance of the squared log contract is
the positive root of v2

sq + 4 (1− x0) vsq + 4
(
x2

0 − SQT
)

= 0
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Summary

We have generalised the set of aggregating characteristics in
Neuberger (2012) to a vector space that contains many higher
moment characteristics

A ‘model-free’ fair-value ‘nice’ moment swap rate can be derived
exactly, in terms of a few fundamental contracts

This rate applies to all partitions, e.g. realised moments computed
from daily, weekly or monthly log returns all have the same
fair-value swap rate
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Outlook

Empirical investigation of aggregating variance and skewness
characteristics and comparison with standard definitions

Empirical investigation of aggregating variance and skewness
risk premia over long horizons (with applications)

For some simple y, derive basis for Fy ⇒ nice moment swaps
trading uncorrelated risks
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Outline of Proof

It is easy to show the AP for all linear and quadratic terms

If the AP holds for (f , z) and a general martingale z, it has to
hold for (f , c) and a continuous martingale c in particular

We can therefore derive necessary conditions for f from c and
find a set of potential solutions

If the AP holds for these candidates and the general
martingale z, the derived condition (Hessian constant) is also
sufficient
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Proof of Theorem

We start from the AP for (f , c), i.e.

E

[∑
tn

f (ĉi)

]
= E

[
f
(∑

tn

ĉi

)]

and, following Itô’s Lemma, write

f (cT − c0) =

∫
t
J′t,0dct + 1

2 tr
∫
t
Ht,0d〈c〉t (6)

and similarly for the partial increments where 〈c〉t denotes the
quadratic covariation and Jt,s := ∇f (ĉt,s), Ht,s := ∇∇′f (ĉt,s)
with ∇ being the vector operator of first partial derivatives
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Proof of Theorem (cont’d)

Using that c follows a martingale we can write the AP as

E

[
tr
∫
t

{
Ht,0 −Ht,m(t)

}
d〈c〉t

]
= 0 (7)

where m(t) = max{ti ∈ tn, ti ≤ t}. Now write

Ht,0 −Ht,m(t) =: EtΛtE′t (8)

where Λt = diag
{
λ1

t , . . . , λ
k
t

}
is a diagonal matrix of eigenvalues

and Et is an orthogonal matrix of eigenvectors
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Proof of Theorem (cont’d)

W.l.o.g. we assume the dynamics

dct = exp
(

1
2ξ
{
Ht,0 −Ht,m(t)

})
dwt

where w is a multivariate Wiener process with T−1〈w〉t = Ik , the
identity matrix and ξ ∈ R is an arbitrary constant.

Then
d〈c〉t = Et exp {ξΛt}E′tdt (9)
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Proof of Theorem (cont’d)

Inserting (8) and (9) into (7) and using the cyclic property of the
trace yields

E

[
tr
∫
t
Λt exp {ξΛt} dt

]
= 0

Differentiating w.r.t. T and ξ and evaluating the function at ξ = 0
yields the condition

E
[
trΛ2

t

]
=

k∑
i=1
E

[(
λi

t

)2
]

= 0,

which implies that all eigenvalues must be equal to zero
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